A\ Acrobat JavaScript
aobe OCripting Reference

Technical Note #5431
Version : Acrobat 6.0

ADOBE SYSTEMS INCORPORATED
Corporate Headquarters
345 Park Avenue
San Jose, CA 95110-2704
(408) 536-6000
http://partners.adobe.com

February 2004

Copyright 2004 Adobe Systems Incorporated. All rights reserved.

NOTICE: All information contained herein is the property of Adobe Systems Incorporated. No part of this publication (whether in hardcopy or
electronic form) may be reproduced or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written consent of the Adobe Systems Incorporated.

PostScript is a registered trademark of Adobe Systems Incorporated. All instances of the name PostScript in the text are references to the
PostScript language as defined by Adobe Systems Incorporated unless otherwise stated. The name PostScript also is used as a product
trademark for Adobe Systems’ implementation of the PostScript language interpreter.

Except as otherwise stated, any reference to a “PostScript printing device,” “PostScript display device,” or similar item refers to a printing device,
display device oritem (respectively) that contains PostScript technology created or licensed by Adobe Systems Incorporated and not to devices
or items that purport to be merely compatible with the PostScript language.

Adobe, the Adobe logo, Acrobat, the Acrobat logo, Acrobat Capture, Distiller, PostScript, the PostScript logo and Reader are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries.

Apple, Macintosh, and Power Macintosh are trademarks of Apple Computer, Inc., registered in the United States and other countries. PowerPC
is a registered trademark of IBM Corporation in the United States. ActiveX, Microsoft, Windows, and Windows NT are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. UNIX is a registered trademark of The Open
Group. All other trademarks are the property of their respective owners.

This publication and the information herein is furnished AS IS, is subject to change without notice, and should not be construed as a
commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or inaccuracies,
makes no warranty of any kind (express, implied, or statutory) with respect to this publication, and expressly disclaims any and all warranties
of merchantability, fitness for particular purposes, and noninfringement of third party rights.

Contents -

Contents

Preface e I
INtroduction e e e e 19
What'sInThisDocument e e e e e 19

Document ConVeNtioNS. it ittt ittt e e e e e e e e e e 19

Font Conventions Used in ThisBook. i i e 19

QUICK Bars. . . . o e e e e e e 21

Other Sources of Information e 23

Online Help. . . oo e e 23

References e e e 23

Acrobat JavaScript ScriptingReference 00000 .. .25

ADBC Object. . o oo e e 25
ADBC Properties. . . v v vttt e e e e e e 26

QL TYPES o ot et e e e e 26

JavaScript TYPes . . e e 27

ADBC Methods. . . .ottt e e e e e 27
getDataSourcelist e 27
NEWCONNECHION . . . i i e e e e e 28
AlternatePresentation Object e 29
AlternatePresentation Properties i 29

ACTIVE L e e e e 29

Y P e e 29
AlternatePresentation Methods. 30

StAIT . L e e 30
L3101 30

ANNOt ObJaCt e e e e 31
ANNOtatioN TYPES i e e e e e 31
Annotation Access from JavaScript. e 33
ANNOt Properties oo i e e e e e 33
alignment ... e 33

Y 33

arrowBegin . . . L e 34

arroWENd . . 35

attachlcon 35

AULhOr . . e 35
borderEffectintensity 36
borderEffectStyle e 36

CONTENES . . .t e e e e e e e e e e 36

AOC . e 37

Acrobat JavaScript Scripting Reference 3

- Contents

fillColor . .. e 37
GESTUNS . o o i e e e e e e e e e e e e e e e 38
hidden e 38
INREPIYTO . .o 38
ModDate e e 38
T 0 TPt 39
NOTEICON . . e e e 39
MOV W . e e e e e e 39
PG . o e e e e e e e e 40
POINT . o e e e e e e e 40
POINES o e e e e e e e 40
POPUPOPEN o o e e e e e e 41
POPUPRECt . . . e e 41
PN e e e e e e e e e 42
QUAAS L e e e 42
=T o P 42
readonly . .. e e 42
HChCoNtents e 43
0] = P 44
StrokeColor . . . o e e 44
eXtFONt . . e 44
1EXESIZE . e e e 45
toggleNoOView e 45
Y P e e e 46
SoUNAICON . .. e e 46
WIdth e 46
Annot Methods o e e e 47
AeStroy . . e e e 47
GetProps . e e e e e 47
getStatelnModel e 48
e PIOPS . . 48
transitionToState e 49
APP Object. . . e e e 50
App Properties. e e e e 50
ACtiVEDOCS . . . e e e 50
calculate . .. e 51
fOCUSRECt e 51
formsVersion e e 51
fromPDFCONVEITEIS ittt e e e e 52
TS 52
fullscreen 53
ANgUAgE . . e 53
NUMPIUGINS . . e 54
openinPlace e 54
platform . . . e e 54
PIUGINS o 55
printColorProfiles e 55
printerNames . . . e e e e 55
runtimeHighlight 56
runtimeHighlightColor 56

4 Acrobat JavaScript Scripting Reference

Contents -

ThermoOmMeter . . . 56
toolbar ... 57
toolbarHorizontal. 57
toolbarVertical e 57
VIEWEITY P . . i e e e e e 58
viewerVariation e e e 58
ViEWEIVeISION . . . e e e 58
App Methods. . . o oo e e 58
addMenultem e 58
addSubMenu . .. e 60
addToolButton e 61
alert e e e e 63
beep . e 65
clearinterval e e 65
clearTimeOuUt . .. o e e 66
execMenultem . . . e e e e 66
getNthPluginName e 67
getPath 68
g0Back .. e 68
goForward e 69
hideMenultem e 69
hideToolbarButton e 69
listMenuUItemMsS e 70
listToolbarButtons i ittt e 71
MailGetAddrs e 71
MailMsg . . . e e 73
NEWDOC . . . e e e 73
NEWFDF . . e 74
OPENDOC & . e e e e e e 75
OPEeNFDF . e 76
POPUPMENU . . . e e e e e 77
POPUPMeENUEX . . . e e e e 77
removeToolButton e 79
FOSPONSE o i e e e e e e e e e e e e e e e e e e 79
setinterval . . . e e e 80
setTimeOUL e e e 81
Bookmark Object. e e 82
Bookmark Properties. e e 82
children . .. e 82
o) o 83
AOC o e 83
NAMIE . L it e e e e e e 83
Lo 07T o T 84
0= =] o 1 Ot 84
Sty 84
Bookmark Methods. e 84
createChild e 84
EXECULE L . e e e e e e e e e e e 85
insertChild e 85
=] 01010 Y= 86

Acrobat JavaScript Scripting Reference 5

Contents

SEtACHION . . . 86

Catalog Object e e e 87
Catalog Properties o i e e e 87

isldle . e e 87

JODS e 87

Catalog Methods o e e e 88
getindex . .. 88

FEMOVE L o it et et e e e e e e e e e 88

Cataloglob Generic Object. oo i e e 89
Certificate Object. o e e e e 89
Certificate Properties. e 20

binary .. 20

ISSUBIDN L L e e 20

keyUsage 20

MD5Hash e 20

SHATHash ... e 91
serialNumber . . . L 91

SUDJECECN . L . e e 91

SUDJECEDN . . e e 91

USAQE v et e 91

Collab Objecto e 93
CollabMethods e 93
addStateModel 93
removeStateModel L 94

Color ObjeCt . . o o e e e 95
ColOr ArTaYS. . o o e e e e 95

Color Propertieso e e 96
ColorMethods. e 97

CONVEIT . e e e e e e e e e 97

equal .. e 98

Column Generic Object. oo it e 98
Columninfo Generic ObjJect o e e 99
Connection Object. o i e e e 99
Connection Methods. e 100

Close L 100
newsStatement e e e 100
getTableList e 100
getColumnList e 101

Console Object oo it e 102
Console Methods e e e 102

SNHOW . e 102

hide .. e 102

PriNtIn . e e 102

cear .. e 103

Data Object . . .t e e 103

Acrobat JavaScript Scripting Reference

Contents -

Data Properties i it e e e e e e e 104
creationDate e e 104

MOADatE e e e 104

MIMETYPE .o e 104

MM . L i e e e e e e e 104

Path e e 105

SIZE L e e e 105
DataSourcelnfo Generic Object. e e 105
Dbg Object. . . e e e 105
Dbg Properties. oo e 106

DS e 106
DbgMethods. 107

C et e e e e e 107

o T 107

o X 108

L o 108

L 109

L3 2 109

L o 110

SV e e e e e e e e e e e e e e e 110

Directory Object o e e e e 110
Directory Properties e e e 111

INfO . e 111

Directory Methods e 114
CONNECE . . L e e e e e e e e e e e e e e 114
DirConnection Object e e 114
DirConnection Properties. i e 115

CaNList . .. e e e 115
canDoCustomSearch e 115
canDoCustomUISearch e 115
canDoStandardSearch e 116

GEOUPS .« o e 116

MM . L e e e e e e e e e e 116

UINAME . e e 116
DirConnection Methods. 117

SEANCN . e e 117
setOutputFields e 119

Do Tall @] o [=Y ot 119
Doc Access from JavaScript. i e e 120
DoC Properties. . . . i e e e e 120
alternatePresentations e 120

AULNOT . e 121

baseURL 122
bookmarkRoot 122

calculate ... e 122
creationDate e e 122

L (= 1 (o 123

Acrobat JavaScript Scripting Reference 7

- Contents

dataObjects e 123
delay 123
dirty . e 123
disclosed e 124
documentFileName 124
external ..o 125
filesize 125
ICONS . o e e e e e e 125
N0 o 126
Keywords 127
JaYOUt . 128
Mmetadata e 128
ModDate e 129
numFields e e e 129
NUMPAgES . . . e e e e e e e e e 129
NUMTEMPIates e e 129
Path e 129
PageNUM . . . e e e e e e e 130
permStatusReady e 130
ProduUCer . e e 130
securityHandler e 130
selectedANNOLS e 131
SOUNAS . o vttt e e e e e e 131
spellDictionaryOrder e e 132
spellLanguagelrder e 132
SUDJECE . e e e 132
templates e e 132
title .o 133
URL .o 133
{0 T] o O 133
ZOOM T Y P i e e e e e e e e 134
DocMethods. o e e 134
addANNOt . . . e e e 134
addField e 135
addlcon .. e 137
addLink ... e e 137
addRecipientListCryptFilter e 139
addSCript . . e e e 140
addThumbnails e e 140
addWeblinks e e 141
bringToFront e 141
calculateNow 142
closeDOC . .. 142
createDataObject e e 143
createTemplate e e 143
deletePages e 144
deleteSound 145
encryptForRecipients 145
EXPOItASTEXt . . e 147
eXPOItASEDF . . e 148
eXPOrtASXFDF . . e e 150

8 Acrobat JavaScript Scripting Reference

Contents -

exportDataObject 151
eXPOrtXFADAta 152
EXtrACtPageS . . e 153
flattenPages 155
GetANNOt . . . e e 155
GetANNOTS . . . e e e e e 156
getDataObject e 157
getField e 158
getlCon .. e e e 159
getlegalWarnings e e e 159
getlinks e e 160
getNthFieldName e 161
getNthTemplate e 161
GetOCGS . . e e e e e 162
getPageBox e 162
getPagelabel e 163
getPageNthWord e 164
getPageNthWordQuads e 164
getPageNumWords e e 165
getPageRotation 165
getPageTransition 166
getPrintParams e 166
getSoUNd . .. e e 167
getTemplate e e e e 167
GetURL .. e e 168
gotoNamedDest e e 168
IMPOrtANFDF . . e 169
IMPOrtANXFEDF . . e e 169
importDataObject e 170
IMPOrtlcoON . . . e e e 171
IMPOrtSOUNd . . . e 172
importTextData i e 173
importXFAData e e 174
INSErtPages e e e e e e 174
MailDOC . . . 175
mailForm . .. 176
MOVEPAgE . . . e e e e e e e e e 177
NeWPage . .. e e 178
1 0 N 178
removeDataObject e 180
removeField 180
remMoVElCON . . . e 181
removeLinks 181
removeTemplate e 182
removeThumbnails 182
removeWeblinks 183
replacePages e 184
resetForm e 184
SAVEAS . e e 185
SCroll o e 187
selectPageNthWord e 188

Acrobat JavaScript Scripting Reference 9

- Contents

SEtACHION . . . 188
setPageACtion e 189
SetPageBoXes e 190
setPagelabels 190
setPageRotations e 192
setPageTabOrder e 192
setPageTransitions e 193
spawnPageFromTemplate e 194
submitForm . . . e 195
SYNCANNOTSCAN . . . o o e e 199

Error ObJects. . . . e e 200
Error Properties o i e e e 201
fileName 201
lineNumber 202
MNESSAGE & . o i et e e e e e e e e e e e e e e e e e 202

NAME L . e e e 202
ErrorMethods e 202
0SNG . o e 202

Event Object. . . . o e 202
Event Type/Name Combinations i e 203
Document Event Processing o oo it e e e 209
Form Event Processing. o ot i e e e e e 210
Event Properties. o i e e e e 210
Change . . e 210
changeEx e e 211
commMItKeY . . e 213
fieldFull .. 213
KEYDOWN . e e 214
Modifier . . . e e 214

NAME L L e e e e e 214
N 214
richChange e e 215
richChangeEx e 215
richValue 216

selENd ... 217
selStart .. 217

SNt e 217

SOUNCE o v it e et e e e e 218

argel .. e e e 218
targetName e 218

YD e e e e 219

value 219
willCommit e 220

FDF Object . . . e e e e 221
FDF Properties. . . . oo e e e e e e e 221
deleteOption e e 221
ISSIgNed . . . 221
numEmbeddedFiles 222

10 Acrobat JavaScript Scripting Reference

Contents -

FDFMethods. e e e e 222
addContact e 222
addEmbeddedFile 223
addRequUESt e e 224
ClOSE e e 224
Mmail . e e 225
SAV L e 226
signatureClear e 226
SIgNAtUIESIgN . . e e 227
signatureValidate e 228

Field Object e e 229
Field Access from JavaScript o it e e 229

Field Properties e e e e e 231
alignment ... e e 231
borderStyle 232
buttonAlignNX e e 232
buttonAlignY e 233
buttonFitBounds 233
buttonPosition e 233
buttonScaleHow 234
buttonScaleWhen 234
calcOrderindex e e 235
charlimit . .. e e 235
COMD e 235
commitOnSelChange e 236
currentValuelndices e 236
defaultStyle 237
defaultValue e 239
doNotScroll . . . e 239
doNotSpellCheck e 239
delay 239
display 240
AOC . e 240
editable e 241
eXpPOrtValues e 241
fileSelect 241
fillColor e 242
hidden e 242
highlight e 243
lineWidth e 243
multiline e 244
multipleSelection e 244
DA L o et e e e e e e e e e e e e e e 244
NUMIEMS . . e e e e e e e e e e e 245
PG . e e e 245
PASSWOI . . e e e 245
PNt o e e e e e e 246
radiosInUNison e 246
readonly ... e 246
< ot 246

Acrobat JavaScript Scripting Reference 11

- Contents

required . . . e e 247
[Tl 0 =D 248
richValue e e 248
FOtatioN . . . e 250
StrokeCOlOr & . e e e 250
Style L e 250
sUbMItNAMeE . . . e 251
1EXtCOlOr . o 251
TeXtFONt e 251
eXtSIZe . . e e 253
YD o 253
USsErNamME e e 253
Value . e 253
ValuBASSTIING . . . o e e e 254
Field Methods e 254
browseForFileToSubmit e 254
buttonGetCaption e e 255
buttonGetlcon e 256
buttonlmporticon e 256
buttonSetCaption e 257
buttonSetlcon e 258
checkThisBox i i e 259
cleartems . .. e e 260
defaultlsChecked e 260
deleteltemAt . . . e 261
QLAY . . e e e e e e e e 262
getltemAL .« . . e 262
0etLOCK . . e 263
insertltemAt e e 263
isBoxChecked e e 264
isDefaultChecked e 265
SEEACHION . . . e e e 265
SETFOCUS . . . e e e 266
SetlteMS . . . e e 267
SEtLOCK . e e 268
signatureGetSeedValue e 268
signaturelnfo e e 269
signatureSetSeedValue 270
SIgNAtUIESIgN . . . e e e 273
signatureValidate e e 275
FullScreen Object. o e e e 276
FullScreen Properties. it e e 276
backgroundColor e 276
ClickAdVaNCES o e 276
CUISOT i e i e e e e e e e e e et e e e e e e e e e e e e e e e 277
defaultTransition i e 277
ESCAPEEXITS . . . e e e 277
iISFUllScreen e 277
00D 278
timeDelay e 278

12 Acrobat JavaScript Scripting Reference

Contents -

TraNSItiONS . . . o e e e 278
USEPAgeTiming . . ittt e 278

LU L= 1122 = 279

Global Object e e e 279
Creating Global Properties e 279
Deleting Global Properties e 279
Global Methods e 280
setPersistent e e 280

SUbSCribE . . . e e 281

lcon Generic ObjJect o ot e e e e 282
Icon Stream Generic Object e 282
Identity Object e e 282
Identity Properties i e e e 283
COTPOratioN . . e e e e e e e e 283

email .. e e 283

loginName e e 283

= 0 = 283

Index Object. . . . e e 283
IndeX Properties. i e e 284
available . .. e 284

=1 0 = 284

Path . e 284

selected e e 284

Index Methods. e 285

build .. e 285

Link Object. e 285
Link Properties.o i e e 286
borderColor e 286
borderWidth e e 286
highlightMode e 286

= o 286

Link Methods. e 287
SELACTION . . . e e 287

OCG ObeCt. . v v o e e e e 287
OCG Properties .« v v oo it et e e e e e e e e 287

=1 0 U= 287

£ 7= 1 (< 288

OCG Methods e 288
SEtACTION . . e e e e 288

Plugin Object o e 289
PluginProperties 289
certified . .. e 289

loaded e 289

= 0 = 289

Path e e 290

Acrobat JavaScript Scripting Reference

13

- Contents

VIS ON L o e e e e e e e e e e e e e e e e e 290
printParams Object. e e e 290
PrintParams Properties. e e 291
binaryOK . . e e 291
bitmapD Pl . . e 291
colorOverride e 291
colorProfile 292
CONSTANTS . . . o e e e e 292
downloadFarEastFonts 293
fileName e 293
firstPage . . . e e 294
flags . .o e e 294
fontPolicy . . . o e 296
gradientDPl e 296
INTEractive . . . e e e e e 297
lastPage . .. e e 297
pageHandling e 298
PageSUDSEt .. e e 298
pPrintAsimage e e 299
PrintContent e 299
printerName e e e e 300
PsLevel .. e 300
rasterFlags e e 300
reVerSEPageS . . . e e 302
tileLabel 302
tileMark . .. e 302
tileOverlapo 303
tileScale e 303
transparencylevel e 303
UsePrinterCRD o e e 303
USETTCONVEISION & . o e e e e e e e e e e e e e e 304
RDN Generic Object i e e e e 304
Report Object o e e e 305
Report Properties 305
absindent e 305
COlOr e 305
SIZE L e e e e 306
Sty 306
ReportMethods 307
breakPage 307
divide . .. 307
INdeNnt e e 307
OUtAENt e 308

o] o T<] o T 308
SAVE e e e e e e e e e e e e e 309
Mmail . e 309
RepoOrt . o e e e 310
WHtETEXt . . e e e e 310

14 Acrobat JavaScript Scripting Reference

Contents -

Row GenericObject e 311
Search Object e e e e 312
Search Properties oo it e e e e e 312
available . .. 312
docinfo .. e 312
dOCTeXt . . o 313
dOCXMP . o 313
bookmarks 313
ignoreAsianCharacterWidth e 313
INAEXES .« o o 313
JPEOEXIf L e 314
legacySearch e 314
Markup .. e e 314
MAtchCase e 314
matchWholeWord e 314
MaxDoCs . . . e 315
PrOXiMITY . . o e e e e e 315
refine e 315
SOUNEX .« v ottt e e e et e e e e e e 315

] 1= 0 0 315
thesauruso 316
wordMatching e e 316
SearchMethods e 316
addindex . .. 316
getindexForPath e 317
QUETY o e e e e e e e e 317
removelndex 318
Security ObJect e e 318
Security Properties e 319
handlers 319
validateSignaturesOnOpen e 319
Security Methods e 319
chooseRecipientsDialog e 319
getHandler e e 322
exXportTOFile . . . e e 323
importFromFile 323
SecurityHandler Object e 324
SecurityHandler Propertieso e e 325
APPEANANCES . o o v e e e e e e e e e e e e e e e e 325
digitallDs e e 325
directories e 326
directoryHandlers e 327
isLoggedin e e 327
loginName e e 327
loginPath e 328
NAME L L e e e e e 328
SIGNAULNOr L . . e e 328
SIGNEDF . e e e 328
signinvisible e 329

Acrobat JavaScript Scripting Reference 15

- Contents

signValidate e 329

signVisible 329

UINAmMeE e e e 329
SecurityHandler Methods e 329

(OGN . e e 329

OgoOUL . o e e 332
NewDirectory e e e 332

NeWUSEr . . e 333
setPasswordTimeout e 334
Signaturelnfo Object. e 335
Signaturelnfo Object properties. i e 335

SOAP ObjeCt. . o ot e e e 343
SOAP Properties. . . . oo vt e e e e e 344
WireDUMD . e 344

SOAP Methods. e 344
CONNEBCT . . e e e e e e e e e 344

FEQUEST . . e e e e e e e e e e 346

FESPONSE o i e e e e e e e e e e 350
streamDecode 351
streamEncode 352
streamFromString e 352
stringFromStream L e 353

Sound Objecto e 353
Sound Properties e 353

NAME . L e e e e e 353

Sound Methods 354

PlaY 354

PAUSE o e e e e e e e e e e e 354

L (0 o N 354

SpPaN Object . . . e e 354
SPaN Properties . . . o o i e e e e 355
alignment .. e 355

fontFamily 355

fontStretch 355

fontStyle . . . e 356
fontWeight 356

Xt e e 356

textColor . . e 356

eXESIZe . . e 356
strikethrough L 357

SUDSCHIPt . . o e e 357

SUPEISCIIPt . o e e e e e e e e e e e e e e 357

underline . .. 358

Spell Object . . . o 358
SPell Propertieso v i e e e 358
available . .. 358
dictionaryNames e 358

16 Acrobat JavaScript Scripting Reference

Contents -

dictionaryOrder e 359
domainNames 359

ANQUAgES . . e e 359
languageOrder e 360

Spell Methods o e 361
addDictionary e e 361

addWord . .. 361

check ... 362

checkText 363

checkWord 363
customDictionaryClose e 364
customDictionaryCreate i 365
customDictionaryDelete e 366
customDictionaryEXport e e 366
customDictionaryOpen e 367

ignoreAll . e e 368
removeDictionary e 369
removeWord e 369

UserWords . . . L e e 370

Statement Object. o e e e 370
Statement Properties. oo v i i e e e 371
columnCount e 371

FOWCOUNT . . . e e e e e 371

Statement Methods 371

BXECULE . . e e 371

getColumn 372
getColumnAIray . . . o e e 372

getROW . . 372

NEeXtROW . . e 373

Tablelnfo Generic Object e 375
Template Object e e e 375
Template Properties e e 375

hidden 375

NAME L L e e e e e e e e e e 376

Template Methods e 376

SPAWN L e e e e e e e e e e e e e e 376
Thermometer Object e 377
Thermometer Propertiesot e e e e 378
cancelled 378

duration 378

value . 378

Xt e 378
Thermometer Methods 378

begin .. 378

=] o 379

TTS ObjeCt . . e e e e 379
TISProperties oo 380

Acrobat JavaScript Scripting Reference 17

- Contents

available . .. e 380
NUMSPEAKEIS e e e 380

It e e 380

SOUNACUBS . . o e e e e 380

SPEAKET . . L e 381
SPEECNCUBS . . o e e 381
SPEEChRAtE e e 381

VolUME . e 381
TISMethodso o e e e e 381
getNthSpeakerName e 381

PAUSE o e e e e e e e e e e e e 382

ASilence . . e e 382

AS0UNd . . e e 382

GTEXt . e e 383

1< P 383

FESUIME L it et et et e e e e e e e e e e e e e e e 383

L (] o N 384

1= | 384

this Object o e e e 384
Variable and Function Name Conflicts. 385

Ut ObJact . . . o e 385
UtilMethods e e 386

Rrintf . e e 386

PriNtd . L e e 387

PrINtX o e e e e e e e 389

SCANA L e e 390
SPaANSTOXML . . . e e e 391
XMITOSPANS . . . e e e 391

XFA ObjJect . . . o 392

New FeaturesandChanges ittt ittt e eeeeesesss395

Acrobat 6.0 Changes. o ot e e 395
Introduced in Acrobat 6.0. L e 395
Modified in Acrobat 6.0 e 403
Deprecated in Acrobat 6.0 e 405
Introduced in Acrobat 6.0.2. e 405

Acrobat 5.0 Changes. e e e 406
Introduced in Acrobat 5.0. e e 406
Modifiedin Acrobat 5.0 e e 413
Deprecated in Acrobat 5.0 e 414
Modified in Acrobat 5.05 e e 414
Modified in Adobe 5.TReader. e 415

18 Acrobat JavaScript Scripting Reference

Preface

Introduction

JavaScript is the cross-platform scripting language of Adobe Acrobat®. Through its
JavaScript extensions, Acrobat exposes much of the functionality of the viewer and its
plugins to the document author/form designer. This functionality, which was originally
designed for within-document processing of forms, has been expanded and extended in
recent versions of Acrobat to include the use of JavaScript in batch processing of
collections of PDF documents, for developing and maintaining an online collaboration
scheme, and for communicating with local databases through ADBC. Acrobat JavaScript
objects, properties and methods can also be accessed through Visual Basic to automate the
processing of PDF documents.

What’s In This Document

- Acrobat JavaScript Scripting Reference: Describes in detail all objects, properties and
methods within the Acrobat extension to JavaScript, and gives code examples

- New Features and Changes: Summarizes the new features and changes introduced in
Adobe Acrobat 6.0 and in Adobe Acrobat 5.0.

Document Conventions

This document uses font conventions common to all Acrobat reference documents, and
also uses a quick bar for many methods and properties to summarize their availability and
usage restrictions.

Font Conventions Used in This Book

The Acrobat documentation uses text styles according to the following conventions.

Font Used for Examples

monospaced Paths and filenames C:\templates\mytmpl.fm

Code examples set off ~ These are variable declarations:
from plain text AVMenu commandMenu, helpMenu;

Acrobat JavaScript Scripting Reference

19

Preface
Document Conventions

Font

Used for

Examples

monospaced bold

monospaced italic

blue

bold

italic

Code items within plain
text

Parameter names and
literal values in
reference documents

Pseudocode

Placeholders in code
examples

Live links to Web pages

Live links to sections
within this document

Live links to other
Acrobat SDK documents

Live links to code items
within this document

PostScriptlanguage and
PDF operators,
keywords, dictionary
key names

User interface names

Document titles that are
not live links

New terms

PostScript variables

The GetExtensionID method...

The enumeration terminates if proc
returns false.

ACCB1 void ACCB2 ExeProc (void)
{ do something }

AFSimple Calculate (cFunction,
cFields)

The Acrobat Solutions Network URL is:
http://partners/adobe.com/asn/
See Using the SDK.

See the Acrobat Core APl Overview.
Test whether an ASAtom exists.

The setpagedevice operator

The File menu

Acrobat Core API Overview

User space specifies coordinates for...

filename deletefile

20

Acrobat JavaScript Scripting Reference

Quick Bars

Preface
Document Conventions

At the beginning of most property and method descriptions, a small table or quick bar
provides a summary of the item’s availability and usage recommendations.

This sample illustrates a quick bar, with descriptive column headings that are not normally

shown.
TV w0
953:\» o 5’%,’ >
Tu=s 2 9 T §
= = M = o -
oz = p o T
85825 & = < -
3 a Y]
& O A -
mﬁm -
Q. w o
60 ©|® O O 6

The following tables show the symbols that can appear in each column and their meanings

Column 1: Version or Deprecated

#4#

A number indicates the version of the software in which a property or
method became available. If the number is specified, then the property or
method is available only in versions of the Acrobat software greater than or
equal to that number.

For Adobe Acrobat 6.0, there are some compatibility issues with older
versions. Before accessing this property or method, the script should check
that the forms version is greater than or equal to that number to ensure
backward compatibility. For example:

if (typeof app.formsVersion !=
"undefined" && app.formsVersion >= 6.0)
{

}

If the first column is blank, no compatibility checking is necessary.

// Perform version specific operations.

As the Acrobat JavaScript extensions have evolved, some properties and
methods have been superseded by other more flexible or appropriate
properties and methods. The use of these older methods are discouraged

and marked by ®&) in the version column.

Column 2: Save and Preferences

©

Using this property or method dirties (modifies) the PDF document. If the
document is subsequently saved, the effects of this method are saved as

well.

Acrobat JavaScript Scripting Reference

21

Preface
Document Conventions

Column 2: Save and Preferences

® The preferences symbol indicates that even though this property does not
change the document, it can permanently change a user’s application
preferences.

Column 3: Security

S This property or method may only be available during certain events for
security reasons (for example, batch processing, application start, or
execution within the console). See the Event Object for details of the various
Acrobat events.

Column 4: Availability in Adobe Reader

If the column is blank, the property or method is allowed in any version of
the Adobe Reader.

The property or method is not allowed in any version of the Adobe Reader.

The property or method is allowed only in version 5.1, or later, of the Adobe
Reader, not in versions 5.05 or below.

The property or method can be accessed only in the Adobe 5.1 Reader
depending on document rights (see Modified in Adobe 5.1 Reader).
F) requires Advanced Forms Features rights
N C) requires the right to manipulate Comments.
(S) requires document Save rights.

PV © 9

Column 5: Availability in Adobe Acrobat Approval

If the column is blank, the property or method is allowed in Acrobat
Approval.

(X) The property or method is not allowed in Acrobat Approval.

Column 6: Availability in Adobe Acrobat

If the column is blank, the property or method is allowed in Acrobat Std and
Acrobat Pro.

Q The property or method is available only in Acrobat Pro.

22 Acrobat JavaScript Scripting Reference

Preface
Other Sources of Information

Other Sources of Information

Online Help

The Web offers a great many resources to help you with JavaScript in general as well as
JavaScript for PDF. For example:

e http://partners.adobe.com/asn/acrobat/—A listing of Acrobat resources for developers.

This listing includes the following:

- http://www.adobe.com/support/forums/main.html—Adobe Systems, Inc. provides
dedicated online support forums for all Adobe products, including Acrobat and
Adobe Reader.

- http://www.adobe.com/support/database.html—In addition to the forums, Adobe
maintains a searchable support database with answers to commonly asked questions.

References

Core JavaScript 1.5 Documentation

Complete documentation for JavaScript 1.5, the version used by Acrobat 6.0, is available on
the web at http://devedge.netscape.com/central/javascript/.

Core JavaScript Guide, Netscape Communications Corporation. Part 1 of this document
gives a conceptual overview of the core JavaScript language. This document is available in
html format at http://devedge.netscape.com/library/manuals/2000/javascript/1.5/guide/.
Note: The rest of the document concerns Netscape’s extensions to core JavaScript and are
not applicable in the Acrobat environment.

Core JavaScript Reference, Netscape Communications Corporation. Parts 1 and 2 are
references to the core JavaScript language. This document is available in html format at
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/. Note: The
rest of the document concerns Netscape’s extensions to core JavaScript and are not
applicable in the Acrobat environment.

Adobe Web Documentation

PDF Reference, Fourth Edition, Version 1.5. The PDF Reference provides a description of the
PDF file format and is intended primarily for application developers wishing to develop PDF
producer applications that create PDF files directly.
http://partners.adobe.com/asn/tech/pdf/specifications.jsp

Acrobat Core APl Overview, Technical Note #5190. Gives an overview of the objects and
methods provided by the plug-in API of the Acrobat viewer. This document is available with

Acrobat JavaScript Scripting Reference 23

http://www.adobe.com/support/forums/main.html
http://www.adobe.com/support/forums/main.html
http://www.adobe.com/support/database.html
http://www.adobe.com/support/database.html
http://www.adobe.com/support/database.html
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/
http://forum.planetpdf.com/
http://www.planetpdf.com
http://www.planetpdf.com
http://www.planetpdf.com/mainpage.asp?webpageid=898
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/
http://partners.adobe.com/asn/tech/pdf/specifications.jsp
http://partners.adobe.com/asn/tech/pdf/specifications.jsp
http://devedge.netscape.com/central/javascript/
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/guide/
http://partners.adobe.com/asn/acrobat/index.jsp

Preface
Other Sources of Information

the Adobe Acrobat Plug-ins SDK CD-ROM or on the Adobe Web site
http://partners.adobe.com/asn/acrobat/docs.jsp.

Acrobat Core API Reference, Technical Note #5191. Describes in detail the objects and
methods provided by the Acrobat viewer’s plug-in API. This document is available with the
Adobe Acrobat Plug-ins SDK CD-ROM or on the Adobe Web site
http://partners.adobe.com/asn/acrobat/docs.jsp.

Acrobat Development Overview, Technical Note #5167. Describes how to develop Acrobat
viewer plug-ins on the various platforms. http://partners.adobe.com/asn/acrobat/docs.jsp.

Programming Acrobat JavaScript using Visual Basic, Technical Note #5417. This document
gives you the information you need to get started using the extended functionality of
JavaScript from a Visual Basic programming environment.
http://partners.adobe.com/asn/acrobat/docs.jsp

24 Acrobat JavaScript Scripting Reference

http://partners.adobe.com/asn/developer/acrosdk/docs/apiovr.pdf
http://partners.adobe.com/asn/developer/acrosdk/docs/apiovr.pdf
http://partners.adobe.com/asn/developer/PDFS/TN/APIOVR.PDF
http://partners.adobe.com/asn/developer/PDFS/TN/APIOVR.PDF
http://partners.adobe.com/asn/developer/PDFS/TN/APIOVR.PDF
http://beta1.adobe.com/ada/acrosdk/DOCS/VWRPIREF.PDF
http://partners.adobe.com/asn/developer/PDFS/TN/APIREF.PDF
http://partners.adobe.com/asn/acrobat/docs.jsp
http://partners.adobe.com/asn/acrobat/docs.jsp
http://partners.adobe.com/asn/acrobat/docs.jsp
http://partners.adobe.com/asn/acrobat/docs.jsp
http://partners.adobe.com/asn/acrobat/docs.jsp

Acrobat JavaScript Scripting
Reference

ADBC Object
5.0 (X)

The Acrobat Database Connectivity (ADBC) plug-in allows JavaScripts inside of PDF
documents to access databases through a consistent object model. The object model is
based on general principles used in the object models for the ODBC and JDBC APIs. Like
ODBC and JDBC, ADBC is a means of communicating with a database though SQL or
Structured Query Language.

ADBC is a Windows-only feature and requires ODBC (Open Database Connectivity from
Microsoft Corporation) to be installed on the client machine.

NoTe: (Security ®):ltis important to note that ADBC provides no security for any of the
databases it is programmed to access. It is the responsibility of the database
administrator to keep all data secure.

The ADBC object, described here, is a global object whose methods allow a JavaScript to
create database connection contexts or connections. Related objects used in database
access are described separately:

Object Brief Description

ADBC Object An object through which a list of accessible databases can be
obtained and a connection can be made to one of them.

Connection Object An object through which a list of tables in the connected
database can be obtained.

Statement Object An object through which SQL statements can be executed
and rows retrieved based on the query.

Acrobat JavaScript Scripting Reference 25

26

Acrobat JavaScript Scripting Reference

ADBC Properties

ADBC Properties

SQL Types

5.0

(X

The ADBC object has the following constant properties representing various SQL Types:

Constant property name value version
SQLT BIGINT 0

SQLT BINARY 1

SQLT BIT 2

SQLT CHAR 3

SQLT DATE 4

SQLT DECIMAL 5

SQLT DOUBLE 6

SQLT FLOAT 7

SQLT INTEGER 8

SQLT LONGVARBINARY 9

SQLT LONGVARCHAR 10

SQLT NUMERIC 11

SQLT REAL 12

SQLT SMALLINT 13

SQLT TIME 14

SQLT TIMESTAMP 15

SQLT TINYINT 16

SQLT VARBINARY 17

SQLT VARCHAR 18

SQLT NCHAR 19 6.0
SQLT NVARCHAR 20 6.0

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
ADBC Methods

Constant property name value version

SQLT NTEXT 21 6.0

The type properties of the Column Generic Object and Columninfo Generic Object use
these properties.

JavaScript Types
5.0 (X

The ADBC object has the following constant properties representing various JavaScript

data types.
Constant Property Name value
Numeric 0
String 1
Binary 2
Boolean 3
Time 4
Date 5
TimeStamp 6

The methods statement .getColumnand statement .getColumnArray use these
types.

ADBC Methods

getDataSourcelist

5.0 (X)

Obtains information about the databases accessible from a given system.

Parameters

None

Acrobat JavaScript Scripting Reference 27

- Acrobat JavaScript Scripting Reference
ADBC Methods

Returns

An array containing a DataSourcelnfo Generic Object for each accessible database on the
system. The method never fails but may return a zero-length array.

Example

See newConnection for an example.

newConnection

5.0 ORI X)

Creates a connection object associated with the specified database. Optionally, you can
supply a user ID and a password.

NOTE: (Security@): Itis possible to connect to a database using a connection string with
no DSN, but this is only permitted, beginning with Acrobat 6.0, during a console,
batch or menu event

Parameters
cDSN The data source name (DSN) of the database.
cUID (optional) User ID.
cPWD (optional) Password.
Returns

A Connection Object, or null on failure.

Example

/* First, get the array of DataSourceInfo Objects available on the
system */

var alist = ADBC.getDataSourcelist () ;

console.show(); console.clear () ;

try {
/* now display them, while searching for the one named
"g32000data". */
var DB = "", msg = "";
if (alist != null) {
for (var i=0; i < aList.length; i++) {
console.println("Name: "+aList [i] .name);
console.println("Description: "+aList [i] .description) ;
// and choose one of interest
if (aList[i] .name=="g32000data")
DB = alist[i] .name;

28 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
AlternatePresentation Object

}

// did we find the database?
if (DB 1= "n) {
// yes, establish a connection.
console.println("The requested database has been found!");
var Connection = ADBC.newConnection (DB) ;
if (Connection == null) throw "Not Connected!";
} else
// no, display message to console.
throw "Could not find the requested database.";
} catch (e) {
console.println(e) ;
}

// alternatively, we could simple connect directly.
var Connection = ADBC.newConnection ("g32000data") ;

AlternatePresentation Object

This object provides an interface to the document's particular alternate presentation. Use
doc.alternatePresentations to acquire an alternatePresentation object.

AlternatePresentation Properties

active
6.0
trueif presentation is currently active and f£alse otherwise. When a presentation is
active it controls how the document that owns it is displayed on the screen.
Type: Boolean Access:R.
Example
See start for an example.
type
6.0

The type of the alternate presentation. Currently, the only supported type is "SlideShow".

Type: String Access:R.

29

Acrobat JavaScript Scripting Reference

- Acrobat JavaScript Scripting Reference
AlternatePresentation Methods

AlternatePresentation Methods

start
6.0
Switches document view into the alternate presentation mode and makes this
AlternatePresentation object active. An exception is thrown if this method is
called if any (this or another) alternate presentation is already active.
Parameters
cOnStop (optional) Expression to be evaluated by Acrobat when
presentation completes for any reason (as a result of a call to
stop, an explicit user action, or presentation logic itself).
cCommand (optional) Command or script to pass to the alternate
presentation. This command is presentation-specific (not an
Acrobat JavaScript expression).
Returns
Nothing
Example
Assume there is a named presentation, “MySlideShow”, within the document.
// oMySlideShow is an AlternatePresentation object
oMySlideShow = this.alternatePresentations.MySlideShow;
if (!oMySlideShow.active) oMySlideShow.start () ;
Note this.alternatePresentations, used to access the specified presentation by
property name.
stop
6.0
Stops the presentation and switches document into the normal (PDF) presentation. An
exception is thrown if this method is called when this presentation is not active.
Parameters
None
Returns
Nothing

30 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Annot Object

Example

Assume oMySlideShowis an AlternatePresentationsobject. See start fora
related example.

// stop the show if already active
if (oMySlideShow.active) oMySlideShow.stop() ;

Annot Object

The functionality of the Acrobat Annotation Plug-in is exposed to JavaScript methods
through the annot object. An annot object represents a particular Acrobat annotation
(that is, an annotation created using the Acrobat annotation tool, or by using
doc.addAnnot.) See also doc.getAnnot and doc.getAnnots.

The user interface in Acrobat refers to annotations as comments.

Annotation Types

Annotations are of different types, as reflected in the type property. The types of
annotations available are:

Circle
FileAttachment
FreeText
Highlight
Ink

Line

Oval
Rectangle
Polygon
Sound
Square
Squiggly
Stamp
StrikeOut
Text

Some properties are used only with particular types of annotations, as shown in the
following table.

Annotation Types Properties

All types type name
rect contents
page modDate
author

Acrobat JavaScript Scripting Reference 31

32

Acrobat JavaScript Scripting Reference
Annot Object

Annotation Types Properties

Circle

FileAttachment

FreeText

Highlight

Ink

Line

Sound

Square

Squiggly

Stamp

StrikeOut

Text

Underline

point
popupRect
fillColor

print
attachIcon

alignment
fillColor
rotate
strokeColor

quads
strokeColor

gestures
strokeColor
point

points
arrowBegin
arrowEnd
point

print
soundIcon

point
popupRect
fillColor
quads
strokeColor
point
popupRect
AP

quads
strokeColor
print
notelcon

quads
strokeColor

strokeColor
width

textFont
textSize
width

point
popupRect

popupRect
width

popupRect
fillColor
strokeColor
width

strokeColor
width

point
popupRect

point
popupRect
point
popupRect
point
popupRect

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

Annot Properties

Annotation Access from JavaScript

Before an annotation can be accessed, it must be “bound” to a JavaScript variable through
a method in the Doc Object:

var a = this.getAnnot (0, "Important");

This example allows the script to now manipulate the annotation named “Important” on
page 1 (0-based page numbering system) via the variable a. For example, the following
code first stores the type of annotation in the variable thetype, then changes the author
to "John Q. Public"

var thetype = a.type; // read property
a.author = "John Q. Public"; // write property

NoTte: Adobe 5.1 Reader always allows you to get the value of any annot property except
contents. The ability to set these properties depends on Comments document
rights, as indicated by the @ icon.

Annot Properties

alignment

0@ | @@

Controls the alignment of the text for a FreeText annotation.

Alignment Value
Left aligned 0
Centered 1
Right aligned 2
Type: Number Access: R/W Annots: FreeText.

AP
50 | © (C N X]

The named appearance of the stamp to be used in displaying a stamp annotation. The
names of the standard stamp annotations are:

Approved
AsTIs
Confidential
Departmental

Acrobat JavaScript Scripting Reference 33

- Acrobat JavaScript Scripting Reference
Annot Properties

Draft

Experimental
Expired

Final

ForComment
ForPublicRelease
NotApproved
NotForPublicRelease
Sold

TopSecret

Type: String Access: R/W Annots: Stamp.

Example

var annot = this.addAnnot ({
page: O,
type: "Stamp",
author: "A. C. Robat",
name: "myStamp",
rect: [400, 400, 550, 5007,
contents: "Try it again, this time with order and method!",
AP: "NotApproved"

3K

NoTe: The name of a particular stamp can be found by opening the PDF file in the Stamps
folder that contains the stamp in question. Choose File > Form > Page Templates to
see a listing of all appearances and their names. For a list of stamp names currently
in use in the document, see doc.icons.

arrowBegin

50 | © ® O

Determines the line cap style which specifies the shape to be used at the beginning of a
Line annot. Permissible values are:

Circle
ClosedArrow
Diamond

None (default)
OpenArrow
Square

Type: String Access: R/W Annots: Line.

Example

See setProps.

34 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
Annot Properties

arrowEnd

50 | © ® O

Determines the line cap style which specifies the shape to be used at the end of a Line
annot. Allowed values are:

Circle
ClosedArrow
Diamond

None (default)
OpenArrow
Square

Type: String Access: R/W Annots: Line.

Example

See setProps.

attachlcon

50 @] | @] 0

The name of an icon to be used in displaying the annotation. Recognized values are:

Paperclip
PushPin (default)
Graph

Tag

Type: String Access: R/W Annots: FileAttachment.

author

50 | © ® O

Gets or sets the author of the annotation.

Type: String Access: R/W Annots: all.

Example

See contents.

Acrobat JavaScript Scripting Reference 35

- Acrobat JavaScript Scripting Reference
Annot Properties
borderEffectintensity
60 | © ® O

The intensity of the border effect, if any. This represents how cloudy a cloudy rectangle,
polygon or oval is.

Type: Number Access: R/W Annots: Rectangle, Polygon,
Oval.

borderEffectStyle
60 | © ® O

If non-empty, the name of a border effect style. Currently, the only supported border
effects are the empty string (nothing) or "C" for cloudy.

Type: String Access: R/\W Annots: Rectangle, Polygon,
Oval.

contents

50 | © ® 0

Accesses the contents of any annotation having a popup. In the case of Sound and
FileAttachment annotations, specifies the text to be displayed as the description of the
sound or file attachment.

Note: Getting and setting of this property in Acrobat 5.1 Reader depends on Comments
document rights.

Type: String Access: R/W Annots: all.
Example
var annot = this.addAnnot ({
page: O,

type: "Text",

point: [400,500],

author: "A. C. Robat",

contents: "Call Smith to get help on this paragraph.",
notelIcon: "Help"

b
See also addAnnot.

36 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

Annot Properties

doc

50 | © ® O

Returns the Doc Object of the document in which the annotation resides.

Type: doc object Access: R Annots: all.

Example
var inch = 72;
var annot = this.addAnnot ({
type: "Square",
rect: [l*inch, 3*inch, 2*inch, 3.5*inch]
3K
/* displays, for example,, "file:///C|/Adobe/Annots/myDoc.pdf" */
console.println (annot.doc.URL) ;

fillColor
0 0] (@)@

Sets the background color for the Circle, Square, Line and FreeText annotations.
Values are defined by using transparent, gray, RGB or CMYK color. See Color Arrays for
information on defining color arrays and how values are used with this property.

Type: Color Access: R/W Annots: Circle, Square, Line,
FreeText.

Example
var annot = this.addAnnot (

{
type: "Circle",
page: O,
rect: [200,200,400,300],
author: "A. C. Robat",
name: "myCircle",
popupOpen: true,
popupRect: [200,100,400,200],
contents: "Hi World!",
strokeColor: color.red,
fillColor: ["RGB",1,1, .855]

Acrobat JavaScript Scripting Reference 37

- Acrobat JavaScript Scripting Reference
Annot Properties
gestures

50 | © ® O

An array of arrays, each representing a stroked path. Each array is a series of alternating x
and y coordinates in Default User Space, specifying points along the path. When drawn, the
points are connected by straight lines or curves in an implementation-dependent way. See
“Ink Annotations” in the PDF Reference for more details.

Type: Array Access: R/\W Annots: Ink.
hidden
50 | © ® O

If true, the annotation is not shown and there is no user interaction, display or printing of
the annotation.

Type: Boolean Access: R/IW Annots: all.
inReplyTo
6.0 | © (CENX)

If non-empty, thename value of the annot that this annot is in reply to.

Type: String Access: R/W Annots: all.

modDate

50 | © ® O

Returns the last modification date for the annotation.

Type: Date Access: R Annots: all.

Example

// This example prints the modification date to the console
console.println (util.printd ("mmmm dd, yyyy", annot.modDate)) ;

38

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

Annot Properties

name

50 | © ® O

The name of an annotation. This value can be used by doc .getAnnot to find and access
the properties and methods of the annotation.

Type: String Access: R/W Annots: all.

Example

// This code locates the annotation named "myNote"

// and appends a comment.

var gannot = this.getAnnot (0, "myNote");

gannot .contents += "\r\rDon’t forget to check with Smith";

notelcon

50 | © ® O

The name of an icon to be used in displaying the annotation. Recognized values are:

Comment

Help

Insert

Key

Note (default)
NewParagraph
Paragaph

Type: String Access: R/W Annots: Text.

Example

See contents.

noView

50 @] | @] 0

If true, the annotation is hidden, but if the annotation has an appearance, that
appearance should be used for printing only.

Type: Boolean Access: R/'W Annots:all.

Example

See toggleNoView.

Acrobat JavaScript Scripting Reference

39

- Acrobat JavaScript Scripting Reference
Annot Properties

page
0 @] @)@

The page on which the annotation resides.

Type: Integer Access: R/W Annots: all.

Example

The following code moves the Annot object, annot, from its current page to page 3 (0-
based page numbering system).

annot.page = 2;
point

50 | © ® O

An array of two numbers, [x,, y,/] which specifies the upper left-hand corner in default,
user’s space, of an annotation’s Text, Sound, or FileAttachmenticon.

Type: Array Access: R/\W Annots: Text, Sound,
FileAttachment.
Example
var annot = this.addAnnot ({
page: O,

type: "Text",

point: [400,500],

contents: "Call Smith to get help on this paragraph.",
popupRect: [400,400,550,500],

popupOpen: true,

noteIcon: "Help"

3K

See also addAnnot and noteIcon.

points
50 | ©® CREX)

An array of two points, [[x;, y;], [xy, y,l], specifying the starting and ending coordinates of
the line in default user space.

Type: Array Access: R/W Annots: Line.

40 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
Annot Properties

Example
var annot = this.addAnnot ({
type: "Line",
page: O,
author: "A. C. Robat",
contents: "Look at this again!",
points: [[10,40], [200,200]]7,

1
See addAnnot, arrowBegin, arrowEnd and setProps.

popupOpen
50 | © ® O

If true the popup text note will appear open when the page is displayed.

Type: Boolean Access: R/W Annots: all except FreeText, Sound,
FileAttachment.
Example
See the print.
popupRect

0@ @@

An array of four numbers [x;, yy, X,p Y] specifying the lower-left x, lower-left y, upper-right
x and upper-right y coordinates—in default user space—of the rectangle of the popup
annotation associated with a parent annotation and defines the location of the popup
annotation on the page.

Type: Array Access: R/W Annots: all except FreeText, Sound,
FileAttachment.
Example
See the print.

Acrobat JavaScript Scripting Reference 41

- Acrobat JavaScript Scripting Reference
Annot Properties

print
50 | © ® O

Indicates whether the annotation should be printed. When set to true, the annotation will
be printed.

Type: Boolean Access: R/'W Annots:all.

quads
0 0] @)@

An array of 8 x n numbers specifying the coordinates of n quadrilaterals in default user
space. Each quadrilateral encompasses a word or group of contiguous words in the text
underlying the annotation. See Table 7.19, page 414 of the PDF Reference for more details.
The quads for a word can be obtained through calls to the getPageNthWordQuads.

Type: Array Access: R/W Annots: Highlight, StrikeOut,
Underline, Squiggly.

Example

See getPageNthWordQuads for an example.

rect

50 | © ® O

The rect array consists of four numbers [x;, y;, X, ¥,,) specifying the lower-left x, lower-
left y, upper-right x and upper-right y coordinates—in default user space—of the rectangle
defining the location of the annotation on the page. See also popupRect.

Type: Array Access: R/W Annots: all.

readOnly
0 [®] (@)@

When true, indicates that the annotation should display, but not interact with the user.

Type: Boolean Access: R/'W Annots:all.

42

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Annot Properties

richContents

60 | ® ®

This property gets the text contents and formatting of an annot. The rich text contents are
represented as an array of Span Objects containing the text contents and formatting of the
annot.

Type: Array of Span ObjectsAccess: R/W Annots: all.

Example
Create a text annot, and give it some rich contents.

var annot = this.addAnnot ({
page: O,
type: "Text",
point: [72,500],
popupRect: [72, 500,6%*72,500-2*72],
popupOpen: true,
notelIcon: "Help"

I3,

var spans = new Array();

spans [0] = new Object() ;
spans [0] .text = "Attention:\r";
spans [0] .textColor = color.blue;
spans [0] .textSize = 18;

spans [1] = new Object() ;
spans [1] .text = "Adobe Acrobat 6.0\r";
spans [1] .textColor = color.red;
spans [1] .textSize = 20;
spans [1] .alignment = "center";

spans [2] = new Object() ;
spans [2] .text = "will soon be here!";
spans [2] .textColor = color.green;
spans [2] .fontStyle = "italic";
spans [2] .underline = true;
spans [2] .alignment = "right";

// now give the rich field a rich value
annot .richContents = spans;

See also field.richValue, event.richValue (and richChange,
richChangeEx) for additional examples of using the Span Object object.

Acrobat JavaScript Scripting Reference 43

- Acrobat JavaScript Scripting Reference
Annot Properties

rotate

50 | © ® O

The number of degrees (0, 90, 180, 270) the annotation is rotated counter-clockwise
relative to the page. The Icon based annotations do not rotate, this property is only
significant for FreeText annotations.

Type: Integer Access: R/\W Annots: FreeText.

strokeColor

50 | © ® O

Sets the appearance color of the annotation. Values are defined by using transparent,
gray, RGB or CMYK color. In the case of a FreeText annotation, strokeColor sets the
border and text colors. Refer to the Color Arrays section for information on defining color
arrays and how values are used with this property.

Type: Color Access: R/W Annots:all.

Example

// Make a text note red
var annot = this.addAnnot ({type: "Text"});
annot .strokeColor = color.red;

textFont

0 @] @)@

Determines the font that is used when laying out text in a FreeText annotation. Valid
fonts are defined as properties of the font object, as listed in £ield. textFont.

An arbitrary font can be used when laying out a FreeText annotation by setting the value
of textFont equal to a string that represents the PostScript name of the font.

Type: String Access: R/W Annots: FreeText.

Example
The following example illustrates the use of this property and the font object.

// Create FreeText annotation with Helvetica
var annot = this.addAnnot ({
page: O,
type: "FreeText",
textFont: font.Helv, // or, textFont: "Viva-Regular",
textSize: 10,

44 Acrobat JavaScript Scripting Reference

textSize

Acrobat JavaScript Scripting Reference -
Annot Properties

rect: [200, 300, 200+150, 300+3*12], // height for three lines
width: 1,
alignment: 1

I3,

50 | ©

ICHX

Examp

Determines the text size (in points) that is used in a FreeText annotation. Valid text sizes
range from 0 to 32767 inclusive. A text size of zero means that the largest point size that will
allow all the text data to still fit in the annotations’s rectangle should be used.

Valid text sizes include zero and the range from 4 to 144 inclusive.

Type: Number Access: R/W Annots: FreeText.

le

See textFont.

toggleNoView

60 | ®

(CRNX

Acrobat JavaScript Scripting Reference

If toggleNoViewis true, the noViewflag is toggled when the mouse hovers over the
annot or the annot is selected. The flag reflects a new flag in the PDF language.

If an annot has both the noViewand toggleNoViewflags set, the annot will generally
be invisible; however, when the mouse is over it or it is selected, it will become visible.

Type: Boolean Access: R/'W Annots:all.

45

- Acrobat JavaScript Scripting Reference
Annot Properties

type

5.0

©

ICHX

Reflects the type of annotation. The type of the annotation can only be set within the
object-literal argument of the doc .addAnnot method. The valid values are:

Circle
FileAttachment
FreeText
Highlight
Ink

Line

Oval
Rectangle
Polygon
Sound
Square
Squiggly
Stamp
StrikeOut
Text
Underline

Type: String Access: R Annots: all.

soundlcon

5.0

©

ICHNX

width

The name of an icon to be used in displaying the annotation. A value of "Speaker" is
recognized.

Type: String Access: R/W Annots: Sound

5.0

©

ICHX

46

The border width in points. If this value is 0, no border is drawn. The default value is 1.

Type: Number Access: R/W Annots: Square, Circle, Line,
Ink, FreeText.

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Annot Methods

Annot Methods

destroy
50 | © ® O

Destroys the annot, removing it from the page. The object becomes invalid.

Parameters

None

Returns

Nothing

Example

// remove all "FreeText" annotations on page 0
var annots = this.getAnnots ({ nPage:0 });
for (var i = 0; i < annots.length; i++)
if (annots[i] .type == "FreeText") annots([i] .destroy() ;

getProps
50 | ©® (AR X)

Get the collected properties of an annot. Can be used to copy an annotation.

Parameters

None

Returns

This method returns an object literal of the properties of the annotation. The object literal is
just like the one passed to addAnnot.

Example

var annot = this.addAnnot ({
type: "Text",
rect: [40, 40, 140, 140]

b

// Make a copy of the properties of annot
var copy props = annot.getProps() ;

// Now create a new annot with the same properties on every page
var numpages = this.numPages;
for (var i=0; i < numpages; i++) {

var copy annot = this.addAnnot (copy props) ;

Acrobat JavaScript Scripting Reference 47

- Acrobat JavaScript Scripting Reference
Annot Methods

// but move it to page i
copy_annot.page=i;

getStateiInModel
60 | ©

Gets the current state of the annot in the context of a state model. See also
transitionToState.

Parameters

cStateModel The state model to determine the state of the annot.

Returns
The result is an array of the identifiers for the current state of the annot.

o |[f the state model was defined to be exclusive then there will only be a single state (or no
states if the state has not been set).

e |[f the state model is non-exclusive then there may be multiple states. The array will have
no entries if the state has not been set and there is no default.

Exceptions

None

setProps

0 @] @)@

Sets many properties of the annotation simultaneously.

Parameters
objectLiteral A generic object, which specifies the properties of the
annot object annotation, such as type, rect, and page, to
be created. (This is the same as the parameter of
doc.addAnnot.)
Returns

The annot object

Example

var annot = this.addAnnot ({type: "Line"})
annot . setProps ({

48 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Annot Methods

page: 0,

points: [[10,40], [200,200]],

strokeColor: color.red,

author: "A. C. Robat",

contents: "Check with Jones on this point.",

popupOpen: true,

popupRect: [200, 100, 400, 200], // place rect at tip of the arrow
arrowBegin: "Diamond",

arrowEnd: "OpenArrow"

H

transitionToState

60 | ®

Makes the state of the Annot cState by performing a state transition. The state transition
is recorded in the audit trail of the Annot.

See also getStateInModel.
Note: For the states to work correctly in a multi-user environment, all users need to have
the same state model definitions; therefore, it is best to place state model

definitions in a folder-level JavaScript file which can be distributed to all users, or
installed on all systems.

Parameters

cStateModel The state model in which to perform the state transition.
cStateModel must have been previously added by calling

addStateModel.
cState A valid state in the state model to transition to.
Returns
Nothing
Exceptions
None
Example

try {
// Create a document
var myDoc = app.newDoc () ;
// Create an annot
var myAnnot = myDoc.addAnnot
(f
page: O,
type: "Text",

Acrobat JavaScript Scripting Reference 49

50

Acrobat JavaScript Scripting Reference

App Object

point: [300,400],
name: "myAnnot",

I3F

// Create the state model

var myStates = new Object;

myStates ["initial"] = {cUIName: "Haven't reviewed it"};
myStates ["approved"] {cUIName: "I approve"};

myStates ["rejected"] {cUIName: "Forget it"};

myStates ["resubmit"] {cUIName: "Make some changes"};

Collab.addStateModel({cName: "ReviewStates", cUIName: "My Review",
oStates: myStates, Default: initial"});

// Change the states
myAnnot . transitionToState ("ReviewStates", "resubmit") ;
myAnnot . transitionToState ("ReviewStates", "approved") ;

}

catch(e) { console.println(e);}

App Object

A static JavaScript object that defines a number of Acrobat specific functions plus a variety
of utility routines and convenience functions.

App Properties

activeDocs

5.0

Returns an array containing the Doc Object for each active document open in the viewer,
see note below. If no documents are active, activeDocs returns nothing, or has the same
behavior as d =new Array (0) in core JavaScript.

Note: For version 5.0, this property returns an array containing the Doc Object for each
active document open in the viewer. In version 5.0.5, this property was changed to
return an array of Doc Objects of only those documents open in the viewer that
have the doc.disclosed property set to true. The “Acrobat 5.0.5 Accessibility
and Forms Patch” changed this behavior—and this is the behavior of activeDocs
for Acrobat 6.0 or later— as follows: During a batch, console or menu event,
activeDocs ignores the disclosed property and returns an array of Doc
Objects of the active documents open in the viewer; during any other event,
activeDocs returns an array of Doc Objects of only those active documents
open in the viewer that have doc.disclosedset to true.

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
App Properties

Type: Array Access:R.

Example

This example searches among the open documents for the document with a title of
"myDoc’, then it inserts a button in that document using addField Whether the
documents need to be disclosed depends on the version of Acrobat executing this
code, and on the placement of the code (for example, console versus MouseUp action).

var d = app.activeDocs;

for (var i1=0; i < d.length; i++)

if (d[i].info.Title == "myDoc") ({
var £ = d[i] .addField ("myButton", "button", 0
f.setAction ("MouseUp", "app.beep(0)") ;
f.fillColor=color.gray;

, [20, 100, 100, 201);

calculate

®

If set to true, allows calculations to be performed. If set to £alse, prevents all calculations
in all documents from occurring. Its default value is true.

See doc.calculate which supersedes this property in later versions.

Type: Boolean Access: R/W.

focusRect

405 | P

Turns the focus rectangle on and off. The focus rectangle is the faint dotted line around

buttons, check boxes, radio buttons, and signatures to indicate that the form field has the
keyboard focus. A value of true turns on the focus rectangle.

Type: Boolean Access: R/W.
Example

app.focusRect = false; // don’t want faint dotted lines around fields

formsVersion

4.0

The version number of the forms software running inside the viewer. Use this method to
determine whether objects, properties, or methods in newer versions of the software are
available if you wish to maintain backwards compatibility in your scripts.

Acrobat JavaScript Scripting Reference

51

- Acrobat JavaScript Scripting Reference
App Properties

Type: Number Access:R.

Example

if (typeof app.formsVersion != "undefined" && app.formsVersion >= 5.0)
{

// Perform version specific operations here.

// For example, toggle full screen mode

app.fs.cursor = cursor.visible;

app.fs.defaultTransition = "";

app.fs.useTimer = false;

app.fs.isFullScreen = !app.fs.isFullScreen;

}

else app.fullscreen = !app.fullscreen;

fromPDFConverters

6.0

Returns an array of file type conversion ID strings. A conversion ID string is passed to
doc.saveAs.

Type: Array Access:R.

Example
List all currently supported conversion ID strings for doc . saveAs.

for (var i = 0; i < app.fromPDFConverters.length; i++)
console.println (app.fromPDFConverters [1]) ;

fs
50 | P

Returns the FullScreen Object, which can be used to access the fullscreen properties.

Type: object Access:R.

Example

// This code puts the viewer into fullscreen (presentation) mode.
app.fs.isFullScreen = true;

See also fullScreenObject.isFullScreen.

52 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
App Properties

fullscreen

®

Puts the Acrobat viewer in fullscreen mode vs. regular viewing mode.

See fullScreenObject.isFullScreen; this property supersedes this property in
later versions. See also £s, which returns a FullScreen Object which can be used to access
the fullscreen properties.

Note: A PDF document being viewed from within a web browser cannot be put into
fullscreen mode. Fullscreen mode can, however, be initiated from within the
browser, but will not occur unless there is a document open in the Acrobat viewer
application; in this case, the document open in the viewer will appear in fullscreen,
not the PDF document open in the web browser.

Type: Boolean Access: R/W.

Example

// on mouse up, set to fullscreen mode
app.fullscreen = true;

In the above example, the Adobe Acrobat viewer is set to fullscreen mode when
app.fullscreenis set to true.If app. fullscreen was f£alse then the default
viewing mode would be set. The default viewing mode is defined as the original mode the
Acrobat application was in before full screen mode was initiated.

language

Defines the language of the running Acrobat Viewer. It returns the following strings:

String Language
CHS Chinese Simplified
CHT Chinese Traditional
DAN Danish
DEU German
ENU English
ESP Spanish
FRA French
ITA Italian
KOR Korean

Acrobat JavaScript Scripting Reference 53

- Acrobat JavaScript Scripting Reference
App Properties

String Language
JPN Japanese
NLD Dutch
NOR Norwegian
PTB Brazilian Portuguese
SUO Finnish
SVE Swedish
Type: String Access:R.

numPluglins

®

Indicates the number of plug-ins that have been loaded by Acrobat. See plugIns which
supersedes this property in later versions.

Type: Number Access:R.

openinPlace

50 | P

Determines whether cross-document links are opened in the same window or opened in a
new window.

Type: Boolean Access: R/W.

Example

app.openInPlace = true;

platform

Returns the platform that the script is currently executing on. Valid values are

WIN
MAC
UNIX

Type: String Access:R.

54 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
App Properties

plugins

5.0

Determines which plug-ins are currently installed in the viewer. Returns an array of Plugin
Objects.

Type: Array Access:R.

Example

// Get array of PlugIn Objects
var aPlugins = app.pluglns;
// Get number of plugins
var nPlugins = aPlugins.length;
// Enumerate names of all plugins
for (var i = 0; 1 < nPlugins; i++)
console.println ("Plugin \#"+i+" is " + aPlugins[i] .name) ;

printColorProfiles

6.0 (X

Returns a list of available printer color spaces. Each of these values is suitable to use as the
value of the printParams.colorProfile.

Type: Array of Strings Access:R.

Example
Print out a listing of available printer color spaces.

var 1 = app.printColorProfiles.length
for (var i = 0; i < 1; i++)

console.println(" (" + (i+l) + ") " + app.printColorProfiles[i]) ;
printerNames
6.0
Returns a list of available printers. Each of these values is suitable to use in
printParams.printerName. If no printers are installed on the system an empty array
is returned.
Type: Array of Strings Access:R.
Example

Print out a listing of available printer color spaces.

Acrobat JavaScript Scripting Reference 55

- Acrobat JavaScript Scripting Reference
App Properties

var 1 = app.printerNames.length
for (var 1 = 0; 1 < 1; i++)

console.println(" (" + (i+l) + ") " + app.printerNames[i]);

runtimeHighlight
60 | P

If true, the background color and hover color for form fields are shown.

Type: Boolean Access: R/W.

Example

If runtime highlighting is off (Ealse) do nothing, else, change the preferences.

if (lapp.runtimeHighlight)
{

app.runtimeHighlight = true;
app.runtimeHighlightColor = color.red;

runtimeHighlightColor
60 | P

Sets the color for runtime highlighting of form fields.

The value of runtimeHightlightColor is a color array, see the Color Object for
details.

Type: A color array Access: R/W.

Example

app.runtimeHighlight = true;
app.runtimeHighlightColor = color.red;

thermometer

6.0

Returns a Thermometer Object. The thermometer object is a combined status
window/progress bar that indicates to the user that a lengthy operation is in progress.

Type: object Access:R.

56

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
App Properties

Example

See the Thermometer Object for an example.

toolbar

®

Allows a script to show or hide both the horizontal and vertical Acrobat tool bars. It does

not hide the tool bar in external windows (that is, in an Acrobat window within a Web
browser).

Type: Boolean Access: R/W.

Example

// Opened the document, now remove the toolbar.
app.toolbar = false;

toolbarHorizontal

® | ®

Allows a script to show or hide the Acrobat horizontal tool bar. It does not hide the tool bar
in external windows (that is, in an Acrobat window within a Web browser).

Note: Acrobat 5.0 drastically changed the notion of what a toolbar is and where it can live
within the frame of the application. This property has therefore been deprecated. If
accessed, it acts like toolbar.

Type: Boolean Access: R/W.

toolbarVertical

® | ®

Allows a script to show or hide the Acrobat vertical tool bar. It does not hide the tool bar in
external windows (that is, in an Acrobat window within a Web browser).

Note: Acrobat 5.0 drastically changed the notion of what a toolbar is and where it can live
within the frame of the application. This property has therefore been deprecated. If
accessed, it acts like toolbar.

Type: Boolean Access: R/W.

Acrobat JavaScript Scripting Reference

57

- Acrobat JavaScript Scripting Reference
App Methods

viewerType

Determines if the running Adobe Reader, Acrobat Std or Acrobat Pro. Values are:

Reader
Exchange
Exchange-Pro

Type: String Access:R.

viewerVariation

5.0

Indicates the packaging of the running Acrobat Viewer. Values are:

Reader
Fill-In
Business Tools
Full

Type: String Access:R.

viewerVersion

4.0

Indicates the version number of the current viewer.

Type: Number Access:R.

App Methods

addMenultem
5.0 ®

Adds a menu item to the application.

NOTE: (Security@): This method can only be executed during application initialization or
console events. See the Event Object for a discussion of Acrobat JavaScript events.

See also the addSubMenu, execMenulItem hideMenultem and 1listMenuItems.

58 Acrobat JavaScript Scripting Reference

Parameters

Acrobat JavaScript Scripting Reference
App Methods

cName

cUser

cParent

nPos

cExec

cEnable

cMarked

The language independent name of the menu item. This language
independent name is used to access the menu item for other
methods (for example, hideMenuItem).

(optional) The user string (language dependent name) to display as
the menu item name. If cUser is not specified then cName is used

The name of the parent menu item. Its submenu will have the new
menu item added to it. If cParent has no submenu then an
exception is thrown.

Menu item names can be discovered with 1istMenuItems.

(optional) The position within the submenu to locate the new menu
item. The default behavior is to append to the end of the submenu.
Specifying nPos as 0 will add to the top of the submenu. Beginning
with Acrobat 6.0, the value of nPos can also be the language
independent name of a menu item.

(Version 6.0) If the value nPos is a string, this string is interpreted as
a named item in the menu (a language independent name of a
menu item). The named item determines the position at which the
new menu item is to be inserted. See bPrepend for additional
details.

Note: The nPos parameter is ignored in certain menus that are
alphabetized. The alphabetized menus are

e The first section of View > Navigational Tabs.
e The first section of View > Toolbars.
e The first section of the Advanced submenu.

Note: When nPos is a number, nPos is not obeyed in the Tools
menu. A menu item introduced into the Tools menu comes in
at the top of the menu. nPos will be obeyed when nPos is a
string referencing another user-defined menu item.

An expression string to evaluate when the menu item is selected by
the user.

(optional) An expression string that determines whether or not to
enable the menu item. The default is that the menu item is always
enabled. This expression should set event.rc to false to disable
the menu item.

(optional) An expression string that determines whether or not the
menu item has a check mark next to it. Default is that the menu item
is not marked. This expression should set event.rcto falseto
uncheck the menu item and true to check it.

Acrobat JavaScript Scripting Reference

59

- Acrobat JavaScript Scripting Reference
App Methods

bPrepend (optional, version 6.0) Determines the position of the new menu item
relative to the position specified by nPos. The default value is
false.lf bPrependis true, the rules for insertion are as follows: If
nPos is a string, the new item is placed before the named item; if
nPos is a number, the new item is placed before the numbered item;
if the named item can’t be found or nPos is not between zero and
the number of items in the list, inclusive, then the new item is
inserted as the first item in the menu (rather than at the end of the

menu).
bPrepend is useful when the named item is the first item in a
group.
Returns
Nothing
Example 1

// This example adds a menu item to the top of the file submenu that
// puts up an alert dialog displaying the active document title.
// This menu is only enabled if a document is opened.
app.addMenuItem({ cName: "Hello", cParent: "File",

cExec: "app.alert (event.target.info.title, 3);",

cEnable: "event.rc = (event.target != null);",

nPos: 0

1
Example 2 (version 6.0)

Place a two menu items in the "File" menu, one before the "Close" item, and the other after
the "Close" item.

// insert after the "Close" item (the default behavior)

app .addMenulItem ({ cName: "myIteml", cUser: "My Item 1", cParent:
"File", cExec: " myProcl()", nPos: "Close"});

// insert before the "Close" item, set bPrepend to true.

app .addMenultem ({ cName: "myItem2", cUser: "My Item 2", cParent:
"File", cExec: " myProc2()", nPos: "Close", bPrepend: true 3N

addSubMenu
5.0 S

Adds a menu item with a submenu to the application.

See also the addMenultem, execMenuItem hideMenuItem, and listMenultems.

NOTE: (Security@): This method can only be executed during application initialization or
console events. See the Event Object for a discussion of Acrobat JavaScript events.

60 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
App Methods

Parameters

cName The language independent name of the menu item. This language
independent name is used to access the menu item for
hideMenuItem, for example.

cUser (optional) The user string (language dependent name) to display as
the menu item name. If cUser is not specified then cName is used.

cParent The name of the parent menu item to receive the new submenu.
Menu item names can be discovered with 1istMenuItems.

nPos (optional) The position within the parent’s submenu to locate the new
submenu. Default is to append to the end of the parent’s submenu.
Specifying nPos as 0 will add to the top of the parent’s submenu.

NoTe: The nPos parameter is ignored in certain menus that are
alphabetized. The alphabetized menus are

e The first section of View > Navigational Tabs.
o The first section of View > Toolbars.
o The first section of the Advanced submenu.

Note: When nPos is a number, nPos is not obeyed in the Tools
menu. A menu item introduced into the Tools menu comesin
at the top of the menu. nPos will be obeyed when nPos is a
string referencing another user defined menu item.

Returns

Nothing

Example

See newDoc.

addToolButton

6.0

Adds a tool button to the “Add-on” toolbar of the Acrobat.

See also removeToolButton.

Acrobat JavaScript Scripting Reference 61

- Acrobat JavaScript Scripting Reference
App Methods

Parameters
cName A unique language independent identifier for the tool button. The
language independent name is used to access the toolbutton for
other methods (for example, removeToolButton).

Note: The value of cName must be unique. To avoid a name conflict,
check 1istToolbarButtons, which lists all toolbar button
names currently installed.

oIcon Alcon Stream Generic Object.

cExec The expression string to evaluate when the tool button is selected.

cEnable (optional) An expression string that determines whether or not to
enable the tool button. The default is that the tool button is always
enabled. This expression should set event.rc to false to disable
the toolbutton.

cMarked (optional) An expression string that determines whether or not the
tool button is marked. The default is that the tool button is not
marked. This expression should set event.rcto trueto mark the
toolbutton.

cTooltext (optional) The text to display in the toolbutton help text when the
user mouses over the toolbutton. The default is to not have a tool tip.

Note: Avoid the use of extended characters in the cTooltext string
as the string may be truncated.

nPos (optional) The Toolbutton number to place the added Toolbutton
before in the Toolbar. If nPos is -1 (the default) then the Toolbutton is
appended to the Toolbar.
Returns
An integer.
Exceptions
None
Example

In this example, a series of three toolbuttons are created using the icon of a "Text"
annotation.

// Create a document

var myDoc = app.newDoc () ;

// Create an annot

var myAnnot = myDoc.addAnnot
({

page: O,

62 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
App Methods

type: "Text",
point: [300,400],
name: "myAnnot"

I3,

// Create a toolbutton using the icon of the annot.
app .addToolButton
({
cName: "myButton",
oIcon: myAnnot.uilcon,
cExec: "console.println('My Button!');",
cTooltext: "This is my button",
nPos: 0
b
// Remove it
app . removeToolButton ("myButton") ;

alert

Displays an alert dialog on the screen.

Parameters

cMsg A string containing the message to be displayed.

nIcon (optional) An icon type. Values are associated with icons as follows:
0: Error (default)
1: Warning
2: Question
3: Status

NoTe: The Macintosh OS does not distinguish between warnings and
questions, so it only has three different types of icons.

nType (optional) A button group type. Values are associated with button
groups as follows:
0: OK (default)
1: OK, Cancel
2:Yes, No
3: Yes, No, Cancel

cTitle (optional, version 6.0) A title of the dialog. If not specified the title
“Adobe Acrobat” is used.

oDoc (optional, version 6.0) The Doc Object that the alert should be
associated with.

Acrobat JavaScript Scripting Reference 63

- Acrobat JavaScript Scripting Reference
App Methods

oCheckbox (optional, version 6.0) If this parameter is passed, a checkbox is
created in the lower left region of the alert box. oCheckbox is a
generic JS object having three properties. The first two property
values are passed to the alert () method, the third property returns
a boolean.
e cMsg (optional): A string to display with the checkbox. If not
specified, the default string is "Do not show this message again".
e bInitialValue (optional): If true, the initial state of the
checkbox is checked. Defaultis false.
e bAfterValue:When the alert method exits, contains the state
of the checkbox when the dialog closed. If true, the checkbox
was checked when the alert box is closed.

Returns
nButton, the type of the button that was pressed by the user:
1: OK
2: Cancel
3:No
4: Yes

Example 1
A simple alert box notifying the user.

app.alert ({
cMsg: "Error! Try again!",
cTitle: "Acme Testing Service"

1
Example 2
Close the document with the user’s permission

// A MouseUp action

var nButton = app.alert ({
cMsg: "Do you want to close this document?",
cTitle: "A message from A. C. Robat",
nIcon: 2, nType: 2

I3,

if (nButton == 4) this.closeDoc() ;

Example 3 (Version 6.0)

One doc creates an alert box in another doc. Suppose there are two documents, DocA and
DocB. One document is open in a browser and other in the viewer.

// The following is a declaration at the document level in DocA
var myAlertBoxes = new Object;
myAlertBoxes.oMyCheckbox = {

cMsg: "Care to see this message again?',

bAftervValue: false

64 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
App Methods
}

The following is a MouseUp action in DocA. The variable theOtherDoc is the Doc object of
DocB. The alert box ask the user if the user wants to see this alert box again. If the user clicks
on the check box provided, the alert does not appear again.

if (!myAlertBoxes.oMyCheckbox.bAftervValue)

{

app.alert ({
cMsg: "This is a message from the DocA?",

cTitle: "A message from A. C. Robat",
oDoc : theOtherDoc,
oCheckbox: myAlertBoxes.oMyCheckbox

3K

beep
Causes the system to play a sound.

Note: On Apple Macintosh and UNIX systems the beep type is ignored.

Parameters

nType (optional) The sound type. Values are associated with sounds as follows:
0: Error
1: Warning
2: Question
3: Status
4: Default (default value)

Returns

None

clearinterval

5.0

Cancels a previously registered interval, oInterval, initially set by setInterval.

See also setTimeOut and clearTimeOut..

Parameters

oInterval The registered interval to cancel.

Returns

Nothing

65

Acrobat JavaScript Scripting Reference

- Acrobat JavaScript Scripting Reference
App Methods

Example
See setTimeOut.

clearTimeOut

5.0

Cancels a previously registered time-out interval, oTime; such an interval is initially set by
setTimeOut.

See also setInterval and clearInterval.

Parameters

oTime The previously registered time-out interval to cancel.

Returns

Nothing

Example
See setTimeOut.

execMenultem

4.0

Executes the specified menu item.

See also addMenultem, addSubMenu, hideMenuItem Use 1listMenuItems to list the
names of all menu items to the console.

Beginning with version 5.0, app . execMenuItem ("SaveAs") can be called, subject to
the restrictions described below. This saves the current file to the user’s hard drive; a
“SaveAs” dialog opens to ask the user to select a folder and file name. Executing the
“SaveAs” menu item saves the current file as a linearized file, provided “Save As creates Fast
View Adobe PDF files” is checked in the Edit > Preferences > General dialog.

NOTE: (Security@): app .execMenuItem("SaveAs") can only be executed during
batch, console or menu events. See the Event Object for a discussion of Acrobat
JavaScript events.

Note: If the user preferences are set to “Save As creates Fast View Adobe PDF files", do not
expect a form object to survive a "SaveAs"; Field Objects are no longer valid, and an
exception may be thrown when trying to access a field object immediately after a
"SaveAs". See examples that follow.

Note: For security reasons, scripts are not allowed to execute the Quit menu item.
Beginning with Acrobat 6.0, scripts are not allowed to execute the Paste menu item.

66 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
App Methods

Parameters
cMenuItem The menu item to execute.
Menu item names can be discovered with 1istMenultems.
Returns
Nothing
Example 1

This example executes the File >Open menu item. It will display a dialog to the user asking
for the file to be opened.

app .execMenultem("Open") ;

Example 2 (Acrobat 5.0)

var f = this.getField("myField") ;

// Assume preferences set to save linearized
app.execMenultem("SaveAs") ;

// exception thrown, field not updated
f.value = 3;

Example 3 (Acrobat 5.0)

var f = this.getField("myField") ;

// Assume preferences set to save linearized
app.execMenultem("SaveAs") ;

// re-get the field after the linear save
var f = getField("myField");

// field updated to a value of 3

f.value = 3;

getNthPluginName
&

Obtains the name of the nth plug-in that has been loaded by the viewer. See also
numPlugIns.

See plugIns which supersedes this property in later versions.

Parameters

nIndex The nth plug-in loaded by the viewer.

Returns

cName, the plug-in name that corresponds to nIndex.

Acrobat JavaScript Scripting Reference 67

- Acrobat JavaScript Scripting Reference
App Methods

getPath

6.0

This method returns the path to folders created during installation. A distinction is made
between application folders and user folders. The method will throw a GeneralError
exception (see Error Objects) if the path does not exist.

Parameters

cCategory (optional) Use this parameter to indicate the category of folder
sought. The two values of cCategory are

app
user

The default is app.

cFolder (optional) A platform independent string that indicates the folder. The
values of cFolder are

root, eBooks, preferences, sequences, documents
javascript, stamps, dictionaries, plugIns, spPlugIns
help, temp, messages, resource, update

The default is root.

Returns
The path to the folder determined by the parameters. An exception is thrown if the folder
does not exist.

Example 1

Find the path to the user’s Sequences folder

try {
var userBatch

} catch(e) {
var userBatch
}

console.println (userBatch) ;

app.getPath ("user", "sequences") ;

"User has not defined any custom batch sequences";

Example 2
Create and save a document to My Documents on a windows platform.

var myDoc = app.newDoc () ;

var myPath = app.getPath("user", "documents") + "/myDoc.pdf"
myDoc . saveAs (myPath) ;

myDoc . closeDoc () ;

goBack

Go to the previous view on the view stack. This is equivalent to pressing the go back button
on the Acrobat tool bar.

68 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
App Methods

Parameters

None

Returns

Nothing

goForward

Go to the next view on the view stack. This is equivalent to pressing the go forward button
on the Acrobat tool bar.

Parameters

None

Returns

Nothing

hideMenultem

4.0 ®

Removes a specified menu item.

See also addMenultem, addSubMenu, execMenuItem, and listMenultems.

NOTE: (Security@)z This method can only be executed during application initialization or
console events. See the Event Object for a discussion of Acrobat JavaScript events.

Parameters
cName The menu item name to remove.
Menu item names can be discovered with 1istMenulItems.
Returns
Nothing
hideToolbarButton

4.0 ®

Removes a specified toolbar button.

NOTE: (Security@)z This method can only be executed during application initialization or
console events. See the Event Object for a discussion of Acrobat JavaScript events.

Acrobat JavaScript Scripting Reference 69

- Acrobat JavaScript Scripting Reference
App Methods

Parameters
cName The name of the toolbar button to remove.
Toolbar item names can be discovered with 1istToolbarButtons.
Returns
Nothing
Example

A file named, myConfig. js, containing the following script is placed in one of the Folder
Level JavaScripts folders.

app.hideToolbarButton ("Hand") ;

When the Acrobat viewer is started, the "Hand" icon does not appear.

listMenultems

5.0

Prior to Acrobat 6.0, this method returned a list of menu item names to the console. This
method has changed significantly.

Beginning with version 6.0, returns an array of treeItem objects, which describes a
menu hierarchy.

See also addMenultem, addSubMenu, execMenuItem and hideMenultem

Parameters

None

Returns

Array of Treeltem Generic Objects.

Treeltem Generic Object

This generic JS Object represents a menu or toolbar item hierarchy. An array of these
objects is returned by app.listMenultems and app.listToolbarButtons
(starting in Acrobat 6.0). It contains the following properties:

cName The name of a menu item or toolbar button.

oChildren (optional) An array of treeItemobjects containing the submenus or
flyout buttons.

Example 1
List all menu item names to the console.

var menultems = app.listMenultems ()

70 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
App Methods
for(var i in menultems)

console.println (menultems [i] + "\n")

Example 2
List all menu items to console, fancy format.

function FancyMenulist (m, nLevel)
{
var s = "";
for (var i = 0; i < nLevel; i++) s += " ";
console.println(s + "+-" + m.cName) ;
if (m.oChildren != null)
for (var 1 = 0; 1 < m.oChildren.length; i++)
FancyMenulList (m.oChildren[i], nLevel + 1);
}
var m = app.listMenultems() ;
for (var i=0; i < m.length; i++) FancyMenuList (m[i], O0);

listToolbarButtons

5.0

Prior to Acrobat 6.0, this method returned a list of toolbar button names to the console. This
method has changed significantly.

Beginning with version 6.0, returns an array of treeItemobjects which describes a
toolbar hierarchy (with flyout toolbars).

Parameters

None

Returns

Array of Treeltem Generic Objects.

Example
List all toolbar names to the console.

var toolbarItems = app.listToolbarButtons ()
for(var i in toolbarItems)
console.println(toolbarItems[i] + "\n")

See also the hideToolbarButton.

mailGetAddrs
6.0 (X)

Pops up an address book dialog to let one choose e-mail recipients. The dialog will be
optionally pre-populated with the semi-colon separated lists of addressees in the cTo,

Acrobat JavaScript Scripting Reference 71

- Acrobat JavaScript Scripting Reference
App Methods

cCc, and e¢Bcc strings. The bCe and bBce booleans control whether the dialog should
allow the user to choose CC and BCC recipients.

See alsomailMsg, mailDoc, mailFormand Report.mail.

Parameters
cTo (optional) A semicolon separated list of “To” addressees to use.
cCc (optional) A semicolon separated list of CC addressees to use.
cBcc (optional) A semicolon separated list of BCC addressees to use.
cCaption (optional) A string to appear on the caption bar of the address dialog.
bCc (optional) A boolean to indicate whether the user can choose CC
recipients.
bBcc (optional) A boolean to indicate whether the user can choose BCC
recipients. This boolean should only be used when bCec is true;
otherwise, the method fails (and returns undefined).
Returns

On failure (the user cancelled), returns undefined. On success, returns an array of three
strings for To, CC, BCC.

Example

var attempts = 2;
while (attempts > 0)

{

var recipients = app.mailGetAddrs
({

cCaption: "Select Recipients, Please",

bBcc: false
3
if (typeof recipients == "undefined") {

if (--attempts == 1)

app.alert ("You did not choose any recipients,"
+ " try again");

} else break;

}

if (attempts == 0)
app.alert ("Cancelling the mail message") ;
else {

JavaScript statements to send mail

}

72 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
App Methods

mailMsg
4.0 (X)

Sends out an e-mail message with or without user interaction.

See alsomailGetAddrs, mailDoc, mailFormand Report.mail.

Note: On Windows: The client machine must have its default mail program configured to
be MAPI enabled in order to use this method.

Parameters
bUI Indicates whether user interaction is required. If true, the remaining
parameters are used to seed the compose-new-message window that
is displayed to the user. If £alse, the cTo parameter is required and
others are optional.
cTo A semicolon-separated list of addressees.
cCc (optional) A semicolon-separated list of CC addressees.
cBcc (optional) A semicolon-separated list of BCC addressees.
cSubject (optional) Subject line text. The length limit is 64k bytes.
cMsg (optional) Mail message text. The length limit is 64k bytes.
Returns
Nothing
Example

/* This will pop up the compose new message window */
app.mailMsg (true) ;
/* This will send out the mail to funl@fun.com and fun2@fun.com */
app.mailMsg(false, "funl@fun.com; funz2efun.com', ™, ™, "This is the
subject",
"This is the body of the mail.") ;
/* Or the same message can be sent as follows: */
app .mailMsg ({bUI: false, cTo: "funl@fun.com; fun2@fun.com",
cSubject: "This is the subject",

cMsg: "This is the body of the mail."});

newDoc

5.0 ORI X)

Creates a new document in the Acrobat Viewer and returns the doc object. The optional
parameters specify the media box dimensions of the document in points.

Acrobat JavaScript Scripting Reference 73

- Acrobat JavaScript Scripting Reference
App Methods

NoTE: (Security@)z This method can only be executed during batch, console or menu
events. See the Event Object for a discussion of Acrobat JavaScript events.

Parameters
nWidth (optional) The width (in points) for the new document. The default
value is 612.
nHeight (optional) The height (in points) for the new document.The default
value is 792.
Returns

Returns the Doc Object of the newly created document

Example

Add a "New" item to the Acrobat File menu. Within "New", there are three menu items:
"Letter", "A4" and "Custom". This script should go in a Folder Level JavaScripts folder.

app.addSubMenu ({ cName: "New", cParent: "File", nPos: 0 })
app.addMenuItem({ cName: "Letter", cParent: "New", cExec:
"var d = app.newDoc();"});
app.addMenuItem({ cName: "A4", cParent: "New", cExec:
"app .newbDoc (420,595) "}) ;
app.addMenuItem({ cName: "Custom...", cParent: "New", cExec:
"var nWidth = app.response({ cQuestion: 'Enter Width in Points',\
cTitle: 'Custom Page Size'});"
+"if (nWidth == null) nWwidth = 612;"
+"var nHeight = app.response ({ cQuestion:'Enter Height in Points',\
cTitle: 'Custom Page Size'});"
+"if (nHeight == null) nHeight = 792;™"
+"app.newDoc ({ nWidth: nWidth, nHeight: nHeight })"});

The code is a little incomplete. In the case of the "Custom" menu item, additional lines can
be inserted to prevent the user from entering the empty string, or a value too small or too
large. See the “General Implementation Limits" in the PDF Reference for the current
limitations.

newFDF
6.0 ® O

Create a new FDF Object that contains no data.

Note: (Security ®) : This method is available only during batch, console, application
initialization and menu events. Not available in the Adobe Reader.

Parameters

None

74 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
App Methods

Returns
A new FDF Object.

Example
Create a FDF with an embedded PDF file.

var fdf = app.newFDF () ;
fdf .addEmbeddedFile ("/c/myPDFs/myFile.pdf", 1);
fdf.save("/c/myFDFs/myFile.fdf");

This example continues following the description of app . openFDF.

openDoc

5.0

Opens a specified PDF document and returns the doc object. The returned doc object can
be used by the script to call methods, or to get or set properties in the newly opened
document. See also closeDoc and setFocus.

Note: When a batch sequence is running, a modal dialog is open, which prevents user
interference while processing; consequently, this method cannot be executed
through a batch sequence.

Note: An exception is thrown and an invalid Doc Object is returned when an html
document is opened using this method. Enclose app . openDoc is a try/catch
construct to catch the exception. See Example 2 below.

Parameters
cPath A device-independent path to the document to be opened. The path
can relative to oDog, if passed. The target document must be
accessible in the default file system.
oDoc (optional) A Doc Object to use as a base to resolve a relative cPath.
Must be accessible in the default file system.
Returns

The Doc Object, ornull

Note: For version 5.0, this method returns a Doc Object. In version 5.0.5, the method
returns the Doc Object, or null if the target document does not have the
doc.disclosed property set to true. The “Acrobat 5.0.5 Accessibility and Forms
Patch” changed this behavior—this is the behavior of openDoc in Acrobat 6.0 or
later—as follows: During a batch, console or menu event, openDoc ignores the
disclosed property and returns the Doc Object of the file specified by cPath;
during any other event, openDoc returns the Doc Object, if disclosed is
true, and null, otherwise.

Acrobat JavaScript Scripting Reference 75

- Acrobat JavaScript Scripting Reference
App Methods

Example 1

This example opens another document, inserts a prompting message into a text field, sets
the focus in the field, then closes the current document.

var otherDoc = app.openDoc ("/c/temp/myDoc.pdf") ;
otherDoc.getField ("name") .value="Enter your name here: "
otherDoc.getField ("name") .setFocus () ;

this.closeDoc () ;

Same example as above, but a relative path is given.

var otherDoc = app.openDoc ("myDoc.pdf", this);
otherDoc.getField ("name") .value="Enter your name here: "
otherDoc.getField ("name") .setFocus () ;

this.closeDoc () ;

Example 2

Open an html document on hard drive and convert to PDF.

try {
app . openbDoc (" /c/myWeb/myHomePage . html") ;
} catch (e) {};

openFDF
6.0 ® O

Creates a new FDF Object by opening the specified file. The FDF object has methods and
properties that can be used on the data that this file contains.

Note: (Security ®): This method is available only during batch, console, application
initialization and menu events. Not available in the Adobe Reader.

Parameters

cDIPath The device-independent path to the file to be opened.

Returns
The FDF Object for the FDF file that is opened.
Example

Create a FDF with an embedded PDF file.

var fdf = app.newFDF() ;
fdf .addEmbeddedFile ("/c/myPDFs/myFile.pdf", 1);
fdf.save("/c/myFDFs/myFile.fdf"); // save and close this FDF

// now open the fdf and embed another PDF doc.
var fdf = app.openFDF("/c/myFDFs/myFile.fdf");
fdf .addEmbeddedFile ("/c/myPDFs/myOtherFile.pdf", 1);

76

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
App Methods

fdf.save("/c/myFDFs/myFile.fdf"); // save and close this FDF

See £df . signatureSign for another example of usage.

popUpMenu

5.0

Creates a pop-up menu at the current mouse position, containing the specified items.

See also popUpMenuEx (preferred).

Parameters

cItem (optional) If the argument is a string, then it is listed in the menu as a
menu item. The menu item name "-" is reserved to draw a separator
line in the menu.

Array (optional) If the argument is an array then it appears as a submenu
where the first element in the array is the parent menu item. This array
can contain further submenus if desired.

Returns

The name of the menu item that was selected.

Example
var cChoice = app.popUpMenu ("Introduction", "-", "Chapter 1",
["Chapter 2", "Chapter 2 Start", "Chapter 2 Middle",
["Chapter 2 End", "The End"]]);
app.alert ("You chose the \"" + cChoice + "\" menu item");

popUpMenuEx

6.0

Creates a pop-up menu at the current mouse position, containing the specified items.

Each of the one or more parameters, denoted as oMenuItem, is an object literal that
describes a menu item to be included in the pop up menu. The parameters are passed in as
an array of objects specifying the properties for each menu item.

The use of popUpMenuEx is preferred ove'r the use of popUpMenu.

77

Acrobat JavaScript Scripting Reference

- Acrobat JavaScript Scripting Reference
App Methods

Parameters

oMenuItem A Menultem Generic Object.

Returns

The cReturn value of the menu item that was selected, or its cName, if cReturn was not
specified for that item.

Menultem Generic Object

This generic JS object represents a menu item passed to app . popUpMenuEx. It has the
following properties:

cName The name of the menu item. This is the string to appear on the menu
item to be created. The value of "-" is reserved to draw a separator line
in the menu.

bMarked (optional) Whether the item is to be marked with a check. The default

is false (not marked).

bEnabled (optional) Whether the item is to appear enabled or grayed out. The
default is true (enabled).

cReturn (optional) A string to be returned when the menu item is selected.
The default is the value of cName.

oSubMenu (optional) A Menultem Generic Object representing a submenu item,
or an array of submenu items, each represented by a Menultem
Generic Object.
Example

The following example illustrates all the features of the popUpMenuEx () method.

cChoice = app.popUpMenuEx
(
{cName: "Iteml", bMarked:true, bEnabled:false},
{cName: "-"},
{cName: "Item2", oSubMenu:
[{cName: "Item2 Subl"},
{
cName: "Item2 Sub2",
oSubMenu :
{cName:"Item 2 Sub2 Subsubl", cReturn: "O"}

]
b

{cName: "Item3"},
{cName: "Item4", bMarked:true, cReturn: "1"}

78 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
App Methods

)

app.alert ("You chose the \"" + cChoice + "\" menu item");

removeToolButton

6.0

Removes a previously added button from the toolbar.

Parameters

cName The language independent identifier provided when addToolButton was
called.

Returns

Nothing

Exceptions

None

Example

See the example following addToolButton.

response
Displays a dialog box containing a question and an entry field for the user to reply to the
question.
Parameters
cQuestion The question to be posed to the user.
cTitle (optional) The title to appear in the dialog’s window title.
chefault (optional) A default value for the answer to the question. If not
specified, no default value is presented.
bPassword (optional) If true, indicates that the user’s response should show as
asterisks (*) or bullets (+) to mask the response, which might be
sensitive information. The defaultis false.
cLabel (optional, version 6.0) A short string to appear in front of and on the
same line as the edit text field.
Returns

A string containing the user’s response. If the user presses the cancel button on the dialog,
the response is the null object.

Acrobat JavaScript Scripting Reference 79

- Acrobat JavaScript Scripting Reference
App Methods

Example

var cResponse = app.response ({
cQuestion: "How are you today?",
cTitle: "Your Health Status",
cDefault: "Fine",
cLabel: "Response:"
1 i
if (cResponse == null)
app.alert ("Thanks for trying anyway.") ;
else
app.alert ("You responded, \""+cResponse+"\", to the health "
+ "question.",3);

setinterval

5.0

Registers a JavaScript expression to be evaluated, and executes the expression each time a
specified period elapses. Pass the returned interval object to clearInterval to
terminate the periodic evaluation. The return value must be held in a JavaScript variable,
otherwise the interval object will be garbage collected and the clock will stop.

See also clearInterval, setTimeOut and clearTimeOut.

Note: Opening and closing the document JavaScripts dialog causes the JavaScript
interpreter to re-read the document JavaScripts, and consequently, to re-initialize
any document level variables. Resetting document level variables in this way after
Javascript experessions have been registered to be evaluated by setInterval
or setTimeOut may cause JavaScript errors if those scripts use document level
variables.

Parameters

cExpr The JavaScript expression to evaluate.

nMilliseconds The evaluation time period in milleseconds.

Returns

An interwval object

Example

For example, to create a simple color animation on a field called "Color" that changes every
second:
function DoIt ()
var £ = this.getField("Coloxr") ;
var nColor = (timeout.count++ % 10 / 10);

// Various shades of red.
var aColor = new Array("RGB", nColor, 0, 0);

80 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
App Methods

f.fillColor = aColor;
}
// save return value as a variable
timeout = app.setInterval ("DoIt ()", 1000);
// Add a property to our timeout object so that DoIt () can keep
// a count going.
timeout.count = 0;

See setTimeOut for an additional example.

setTimeOut

5.0

Registers a JavaScript expression to be evaluated, and executes the expression after a
specified period elapses. The expression is executed only once. Pass the returned timeout
object to clearTimeOut to cancel the timeout event. The return value must be held in a
JavaScript variable, otherwise the timeout object will be garbage collected and the clock
will stop.

See also clearTimeOut, setInterval and clearInterval.

NoTe: Opening and closing the document JavaScripts dialog causes the JavaScript
interpreter to re-read the document JavaScripts, and consequently, to re-initialize
any document level variables. Resetting document level variables in this way after
Javascript experessions have been registered to be evaluated by setInterval
orsetTimeOut may cause JavaScript errors if those scripts use document level
variables.

Parameters

cExpr The JavaScript expression to evaluate.

nMilliseconds The evaluation time period in milleseconds.

Returns

A timeout object

Example

This example creates a simple running marquee. Assume there is a text field named
"marquee". The default value of this field is "Adobe Acrobat version 5.0 will soon be here!".

// Document level JavaScript function
function runMarquee () {
var £ = this.getField("marquee") ;
var cStr = f.value;
// get field value
var aStr = cStr.split(""); // convert to an array
astr.push(aStr.shift()) ; // move first char to last

Acrobat JavaScript Scripting Reference 81

- Acrobat JavaScript Scripting Reference
Bookmark Object

cStr = aStr.join(""); // back to string again
f.value = cStr; // put new value in field

}

// Insert a mouse up action into a "Go" button

run = app.setInterval ("runMarquee ()", 100) ;

// stop after a minute

stoprun=app.setTimeOut ("app.clearInterval (run)",6000) ;

// Insert a mouse up action into a "Stop" button
try {

app.clearInterval (run) ;

app.clearTimeOut (stoprun) ;
}catch (e) {}

Here, we protect the "Stop" button code with a try/catch. If the user presses the "Stop"
button without having first pressed the "Go", run and stoprun will be undefined, and the
"Stop" code will throw an exception. When the exception is thrown, the catch code is
executed. In the above example, code does nothing if the user presses "Stop" first.

Bookmark Object

A bookmark object represents a node in the bookmark tree that appears in the bookmarks
navigational panel. Bookmarks are typically used as a “table of contents” allowing the user
to navigate quickly to topics of interest.

Bookmark Properties

children

5.0

Returns an array of bookmark objects that are the children of this bookmark in the
bookmark tree. See also parent and bookmarkRoot.

Type: Array Access:R.

Example
Dump all bookmarks in the document.

function DumpBookmark (bm, nLevel)
{
var s = "";
for (var i = 0; 1 < nLevel; i++) 8 += " ";
console.println(s + "+-" + bm.name) ;
if (bm.children != null)

82 Acrobat JavaScript Scripting Reference

color

Acrobat JavaScript Scripting Reference
Bookmark Properties

for (var 1 = 0; i < bm.children.length; i++)
DumpBookmark (bm.children([i], nLevel + 1);
}
console.clear(); console.show() ;
console.println ("Dumping all bookmarks in the document.");
DumpBookmark (this.bookmarkRoot, O0) ;

50 | ©

Specifies the color for a bookmark. Values are defined by using gray, RGB or CMYK color. See
Color Arrays for information on defining color arrays and how values are used with this
property. See also style.

Note: This property is read-only in Adobe Reader.

Type: Array Access: R/W.

Example

doc

The following fun script will color the top level bookmark red, green and blue.

var bm = bookmarkRoot.children[O0] ;
bm.color = color.black;
var C = new Array(l, 0, 0);
var run = app.setInterval (
'bm.color = ["RGB",C[0],C[1],C[2]]; C.push(C.shift());', 1000);
var stoprun=app.setTimeOut (
"app.clearInterval (run); bm.color=color.black",12000) ;

5.0

name

The Doc Object that the bookmark resides in.

Type: object Access:R.

50 | ©

The text string for the bookmark that the user sees in the navigational panel.

Note: This property is read-only in Adobe Reader.

Type: String Access: R/W.

Acrobat JavaScript Scripting Reference 83

- Acrobat JavaScript Scripting Reference
Bookmark Methods

open

5.0

©

parent

Determines whether the bookmark shows its children in the navigation panel (open) or
whether the children sub-tree is collapsed (closed).

Note: This property is read-only in Adobe Reader.

Type: Boolean Access: R/W.

5.0

style

Returns the parent bookmark of the bookmark or null if the bookmark is the root
bookmark. See also children and bookmarkRoot.

Type: object |null Access:R.

5.0

Specifies the style for the bookmark’s font: 0 indicates normal, 1 is italic, 2 is bold, and 3 is
bold-italic. See also color.

Note: This property is read-only in Adobe Reader.

Type: Integer Access: R/W.

Bookmark Methods

createChild

5.0

©

o

84

Creates a new child bookmark at the specified location. See also children,
insertChild and remove.

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
Bookmark Methods

Parameters
cName The name of the bookmark that the user will see in the navigation
panel.
cExpr (optional) An expression to be evaluated whenever the user clicks on
the bookmark. Default is no expression. This is equivalent to creating
a bookmark with a JavaScript action; see the PDF Reference,
“JavaScript Action” for details.
nIndex (optional) The 0-based index into the children array of the bookmark
at which to create the new child. Default is 0.
Returns
Nothing
Example
Create a bookmark at the top of the bookmark panel that takes youto the next page in the
document.

bookmarkRoot .createChild ("Next Page", "this.pageNum++") ;

execute

5.0

Executes the action associated with this bookmark. This can have a variety of behaviors. See
the PDF Reference, Section 7.5.3, “Actions Types” for a list of common action types. See also
createChild

Parameters

None

Returns

Nothing

insertChild
50 | © (X

Inserts the specified bookmark as a child of this bookmark. If the bookmark already exists in
the bookmark tree it is unlinked before inserting it back into the tree. In addition, the
insertion is checked for circularities and disallowed if one exists. This prevents users from
inserting a bookmark as a child or grandchild of itself. See also children,
createChild, and remove.

Acrobat JavaScript Scripting Reference 85

- Acrobat JavaScript Scripting Reference
Bookmark Methods

Parameters

oBookmark A bookmark object to add as the child of this bookmark.

nIndex (optional) The 0-based index into the children array of the bookmark
at which to insert the new child. The default is 0.

Returns

Nothing

Example
Take the first child bookmark and move it to the end of the bookmarks.

var bm = bookmarkRoot.children[0];
bookmarkRoot . insertChild (bm, bookmarkRoot.children.length) ;

remove

50 | © (X)

Removes the bookmar and all its children from the bookmark tree. See also children,
createChild,and insertChild.

Parameters
None
Returns

Nothing

Example
Remove all bookmarks from the document.

bookmarkRoot . remove () ;

setAction

6.0

Sets a JavaScript action for a bookmark. See also addScript, setPageAction, and
setAction.

Parameters

cScript Defines the JavaScript expression that is to be executed whenever the
user clicks on the bookmark.

86 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
Catalog Object

Returns

Nothing

Example

Attach an action to the topmost bookmark.

var bm = bookmarkRoot.children[0]
bm.setAction ("app.beep(0) ;") ;

Catalog Object

A static object that accesses the functionality provided by the Acrobat Catalog plug-in. This
plug-in must be installed in order to interface with the catalogobject.

Note: Catalog plug-in (and the catalog object) is available only in the Acrobat Pro.

See also the Index Object, used to invoke various indexing operations provided by Catalog
plug-in, and the CatalogJob Generic Object.

Catalog Properties

Returns true when Catalog is idle and not busy with an indexing job.

isldle
6.0 (X) (P)
Type: Boolean Access:R.
jobs
6.0 (X) (P)

Gets information about the Catalog jobs. Catalog maintains a list of its pending, in progress
and completed jobs for each Acrobat session. Returns an array of CatalogJob Generic
Objects.

Type: Array Access:R.

Acrobat JavaScript Scripting Reference 87

- Acrobat JavaScript Scripting Reference
Catalog Methods

Catalog Methods

getindex
6.0 (X (P)

Uses a specified path of a Catalog index to get an index object. The returned index
object can be used to perform various indexing operations such as building or deleting an

index.

Parameters

cDIPath The device-independent path of a Catalog index.

Returns
The Index Object.

remove

6.0 (X (P)

Removes the specified CatalogJdob object from Catalog's job list. Catalog maintains a list
of pending, in progress and completed jobs for each Acrobat session.

Parameters
oJob The CatalogJob Generic Object to remove, as returned by the jobs
property and various methods of the Index Object.
Returns
Nothing
Example

Delete all jobs that are pending and need complete rebuild.

if (typeof catalog != undefined) {
for (var i=0; i<catalog.jobs.length; i++){
var job = catalog.jobs[i];
console.println("Index: ", job.path);

if (job.status == "Pending" && job.type == "Rebuild")
catalog.remove (job) ;

88 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
CatalogJob Generic Object

CatalogJob Generic Object

This generic JS object provides information about a job submitted to Catalog. It is returned
by index.build, and the catalog. jobs property, and passed to catalog.remove.

It has the following properties:

Property Type Access Description

path String R Device independent path of the index associated
with the job

type String R Type of indexing operation associated with the
job. Possible values are:

Build
Rebuild
Delete

status String R The status of the indexing operation. Possible
values are:

Pending

Processing
Completed
CompletedWithErrors

Certificate Object
The Certificate Object provides read-only access to the properties of an X.509 public key
certificate.
Related objects and methods are:
Security Object: importFromFile and exportToFile
DirConnection Object: search
Field Object: signatureInfo
FDF Object: signatureValidate
RDN Generic Object
Usage Generic Object

Note: There are no security restrictions on this object.

Acrobat JavaScript Scripting Reference 89

- Acrobat JavaScript Scripting Reference
Certificate Properties

Certificate Properties

binary
5.0
The raw bytes of the certificate, as a hex encoded string.
Type: String Access:R.
issuerDN
5.0
The distinguished name of the issuer of the certificate, returned as an RDN Generic Object.
Type: RDN object Access:R.
keyUsage
6.0
An array of strings indicating the value of the certificate key usage extension. Possible
values are:
kDigitalSignature
kNonRepudiation
kKeyEncipherment
kDataEncipherment
kKeyAgreement
kKeyCertSign
kCRLSign
kEncipherOnly
kDecipherOnly
Type: Array of Strings Access:R.
MD5Hash
5.0

The MD5 digest of the certificate, represented as a hex-encoded string. This provides a
unique fingerprint for this certificate.

90 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Certificate Properties

Type: String Access:R.
SHA1Hash
5.0
The SHA1 digest of the certificate, represented as a hex -encoded string. This provides a
unique fingerprint for this certificate.
Type: String Access:R.
serialNumber
5.0
A unique identifier for this certificate, used in conjunction with 1ssuerDN.
Type: String Access:R.
subjectCN
5.0
The common name of the signer.
Type: String Access:R.
subjectDN
5.0
The distinguised name of the signer, returned as an RDN Generic Object.
Type: RDN object Access:R.
usage
6.0

The purposes for which this certificate may be used within the Acrobat environment
returned as a Usage Generic Object.

Acrobat JavaScript Scripting Reference 91

- Acrobat JavaScript Scripting Reference
Certificate Properties

Type: usage object Access:R.

Usage Generic Object

This generic JS object represents a certificate usage value in the certificate.usage
property. It has the following properties.

Property Type Access Description

endUserSigning Boolean R trueif the certificate is useable for
end-user signing.

endUserEncryption Boolean R trueif the certificate is useable for
end-user encryption.

Example

The following example shows how the usage property can be used. The result of this
script execution will be that the currently open document is encrypted for everyone in the
addressbook. Addressbook entries that contain sign-only certificates, CA certificates, no
certificates at all, or are otherwise unsuitable for encryption, will not be included in the final
recipient list.

var eng = security.getHandler("Adobe.RAB");
var dc = eng.directories[0] .connect () ;
var recipients = dc.search() ;

var filteredRecipients = new Array() ;
for(i = 0; 1 < recipients.length; ++i) {
if (recipients[i] .defaultEncryptCert &&
recipients[i] .defaultEncryptCert.usage.endUserEncryption) {
filteredRecipients [filteredRecipients.length] = recipients[i];
continue;
}
if (recipients[i] .certificates) {
for(j = 0; j < recipients[i].certificates.length; ++j)
if (recipients[i] .certificates[j] .usage.endUserEncryption) {
filteredRecipients[filteredRecipients.length]
= recipients[i];
continue;

}
}

this.encryptForRecipients ({ [userEntities: filteredRecipients] });

92 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Collab Object

Collab Object

This object represents the Collaboration functionality.

Collab Methods

addStateModel

6.0

Adds a new state model to Acrobat. A state model describes the valid states that an annot
using the model can have (see the Annot Object for details about getting and setting the
state of an annot). State models can be used to describe the workflow that a document
review goes through and can be used for review management.

See also removeStateModel, getStateInModel and transitionToState.

Parameters

cName

cUIName

oStates

cDefault

bHidden

bHistory

A unique, language-independent identifier for the State Model.

The display name of the state model used in the User Interface and
should be localized.

The states in the state model, described by a States Object Literal.

(optional) One of the states in the model to be used as a default
state if no other state is set. The default is for there to be no default
state.

(optional) Whether the state model should be hidden in the state
model user interface. The default is £alse (the State Model is
shown).

(optional) Whether an audit history is maintained for the state
model. Keeping an audit history requires more space in the file. The
default is true.

Returns

Nothing

Acrobat JavaScript Scripting Reference

93

- Acrobat JavaScript Scripting Reference
Collab Methods

States Object Literal

This object literal represents a set of states in a state model, and is passed as the oStates
parameter. The elements in the object literal are the unique state identifiers and the values
are objects having the following properties:

cUIName The Ul (display name) for the state.

oIcon (optional) An Icon Stream Generic Object that will be displayed in
the Ul for the state.

Example

Add a new state model with a unique name of "ReviewStates":

try {
var myStates = new Object;
myStates ["initial"] = {cUIName: "Haven't reviewed it"};
myStates ["approved"] {cUIName: "I approve"};
myStates ["rejected"] {cUIName: "Forget it"};
myStates ["resubmit"] = {cUIName: "Make some changes"};
Collab.addStateModel({cName: "ReviewStates", cUIName: "My Review",
oStates: myStates, Default: initial"});
} catch(e) { console.println(e); }

removeStateModel

6.0

Removes a state model that was previously added by calling addStateModel. Removing
a state model does not remove the state information associated with individual annots—
if the model is removed and added again, all of the state information for the annots will
still be available.

See also addStateModel, getStateInModel and transitionToState.

Parameters
cName A unique, language-independent identifier for the State Model that
was used in addStateModel.
Returns
Nothing
Example

Continuing the example in addStateModel, we remove the state model "ReviewStates":

try
{

// Remove the state model

94 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
Color Object

Collab.removeStateModel ("ReviewStates") ;

}

catch(e) { console.println(e); }

Color Object

The color object is a convenience static object that defines the basic colors. These colors
are accessed in JavaScripts via the color object. Use this object whenever you want to set
a property or call a method that require a color array. The color object is defined in
AForm.js.

Color Arrays

A color is represented in JavaScript as an array containing 1, 2, 4, or 5 elements
corresponding to a Transparent, Gray, RGB, or CMYK color space, respectively. The first
element in the array is a string denoting the color space type. The subsequent elements are
numbers that range between zero and one inclusive. For example, the color red can be
representedas ["RGB", 1, 0, O0].

Invalid strings or insufficient elements in a color array cause the color to be interpreted as
the color black.

Number of
Additional
Color Space String Elements Description

Transparent "T" 0 A transparent color space indicates a complete
absence of color and will allow those portions
of the document underlying the current field to
show through.

Gray "G" 1 Colors in the gray color space are represented
by a single value—the intensity of achromatic
light. In this color space, 0 is black, 1 is white,
and intermediate values represent shades of
gray. For example, .5 represents medium gray.

RGB "RGB" 3 Colors in the RGB color space are represented
by three values: the intensity of the red, green,
and blue components in the output. RGB is
commonly used for video displays because
they are generally based on red, green, and
blue phosphors.

Acrobat JavaScript Scripting Reference 95

926

Acrobat JavaScript Scripting Reference

Color Properties
Number of
Additional
Color Space String Elements Description
CMYK "CMYK" 4 Colors in the CMYK color space are represented

by four values, the amounts of the cyan,
magenta, yellow, and black components in the
output. This color space is commonly used for
color printers, where they are the colors of the
inks used in four-color printing. Only cyan,
magenta, and yellow are necessary, but black is
generally used in printing because black ink
produces a better black than a mixture of cyan,
magenta, and yellow inks, and because black
ink is less expensive than the other inks.

Color Properties

The color object defines the following colors:

Color Object Keyword Equivalent JS Version
Transparent color.transparent ["T"]

Black color.black ["G", 0]

White color.white ["G", 1]

Red color.red ["rRGB", 1,0,0]

Green color.green ["rRGB", 0,1,0]

Blue color.blue ["RGB", 0, 0, 1]

Cyan color.cyan ["CMYK", 1,0,0,01]
Magenta color.magenta ["CMYK", 0,1 0,0]
Yellow color.yellow ["CMYK", 0,0,1,0]

Dark Gray color.dkGray ["G", 0.25] 4.0
Gray color.gray ["G", 0.5] 4.0
Light Gray color.ltGray ["G", 0.75] 4.0

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
Color Methods

This example sets the text color of the field to red if the value of the field is negative, else it
sets it to black.

Example

var f = event.target; /* field that the event occurs at */
f.target.textColor = event.value < 0 ? color.red : color.black;

Color Methods

convert

5.0

Converts the colorspace and color values specified by the color object to the specified
colorspace. Note that conversion to the gray colorspace is lossy in the same fashion that
displaying a color TV signal on a black and white TV is lossy. The conversion of RGB to CMYK
does not take into account any black generation or under color removal parameters.

Parameters

colorArray Array of color values. See Color Arrays.

cColorspace The colorspace to which to convert.

Returns

A color array.

Example
The return value of the code line below is the array ["CMYK", 0, 1, 1, O].

color.convert (["RGB", 1,0,0], "CMYK")

Acrobat JavaScript Scripting Reference 97

98

Acrobat JavaScript Scripting Reference
Column Generic Object

equal
5.0
Compares two Color Arrays to see if they are the same. The routine performs conversions, if
necessary, to determine if the two colors are indeed equal (for example, ["RGB" 1101 is
equalto["CMYK"0010]).
Parameters
colorArrayl The first color array for comparison.
colorArray?2 The second color array for comparison.
Returns
trueif the arrays represent the same color, false otherwise.
Example

var £ = this.getField("foo");
if (color.equal (f.textColor, f.fillColor))
app.alert ("Foreground and background color are the same!") ;

Column Generic Object

This generic JS object contains the data from every row in a column. A column object is
returned by statement.getColumn and statement.getColumnArray. See also
the Columnlinfo Generic Object.

It has the following properties.

Property Type Access Description

columnNum number R The number identifying the column.

name string R The name of the column.

type number R One of the SQL Types for the data in the column.
typeName string R The name of the type of data the column contains.
value various R/W The value of the data in the column, in the format in

which the data was originally retrieved.

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

Columninfo Generic Object

Columninfo Generic Object

This generic JS object contains basic information about a column of data, and is returned
by connection.getColumnList. See also Column Generic Object.

It has the following properties.

Property Type Access

Description

name string R

description string R

type number R

typeName string R

A string that represents the identifying name of
a column. This string could be used in a
statement.getColumn call to identify the
associated column.

A string that contains database-dependent
information about the column.

A numeric value identifying one of the ADBC
SQL Types that applies to the data contained in
the column associated with the ColumnInfo
object.

A string identifying the type of the data
contained in the associated column. This is not
the SQL Types (see type above), but a
database-dependent string representing the
data type. This property may give useful
information about user-defined data types.

Connection Object

5.0

o

The Connection object encapsulates a session with a database. Connection objects
are returned by ADBC.newConnection. See also the ADBC Object, Statement Object,
Column Generic Object, Columnlinfo Generic Object, Row Generic Object, and Tablelnfo

Generic Object.

Acrobat JavaScript Scripting Reference

29

- Acrobat JavaScript Scripting Reference
Connection Methods

Connection Methods

close

6.0 (X

Closes an active connection and invalidates all the objects created from the connection.

Parameters

None

Returns

Nothing

newStatement

5.0 (X)

Creates a Statement Object through which database operations may be performed.

Parameters

None

Returns
A Statement object on success or null on failure.

Example
// get a connection object, see newConnection
var con = ADBC.newConnection("g32000data") ;
// now get a statement object
var statement = con.newStatement () ;

var msg = (statement == null) ?
"Failed to obtain newStatement!" : "newStatement Object obtained!";

console.println (msg) ;

getTableList
5.0 (X)

Gets information about the various tables in a database.

Parameters

None

100 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

Connection Methods

Returns

It returns an array of Tablelnfo Generic Objects. This method never fails but may return a
zero-length array.

Example

Assuming we have a Connection object (con) already in hand
(see newStatement and newConnection), get the list of tables

var tableInfo = con.getTablelist () ;

console.println("A list of all tables in the database.");

for (var 1 = 0; i < tablelInfo.length; i++) {
console.println("Table name: "+ tableInfo[i] .name) ;

console.println("Description: "+ tableInfol[i] .description) ;

getColumnList

5.0 (X

Gets information about the various columns in the table

Parameters

cName The name of the table to get column information about.

Returns

Returns an array of Columninfo Generic Objects. This method never fails but may return a
zero-length array.

Example

Assuming we have a Connection object (con) already in hand (see newStatement and
newConnection), get list of all column names.

var con = ADBC.newConnection ("g32000data") ;

var columnInfo = con.getColumnList ("sales") ;

console.println ("Column Information") ;

for (var 1 = 0; i < columInfo.length; i++) {
console.println(columnInfo[i] .name) ;

console.println("Description: "+ columnInfo[i] .description) ;

Acrobat JavaScript Scripting Reference

101

- Acrobat JavaScript Scripting Reference
Console Object

Console Object

XA

The Console object is a static object to access the JavaScript console for displaying debug

messages and executing JavaScript. It does not function in the Adobe Reader or Acrobat
Approval.

See also the Dbg Object.

Console Methods

show

Shows the console window.

Parameters

None

Returns

Nothing

hide
Closes the console window.

Parameters

None

Returns
Nothing
printin

Prints a string value to the console window with an accompanying carriage return.

Parameters

cMessage A string message to print.

Returns

Nothing

102

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Data Object

Example 1

This example prints the value of a field to the console window. The script could executed
during a mouse up event.

var £ = this.getField("myText") ;
console.clear() ;

console.show() ;

console.println("Field value = " + f.value);

Example 2

The console can be used as a debugging tool; you can write values of variables to the
console, for example. The script below is taken from the document level.

var debugIsOn = true;
function myFunction (n, m)

{

if (debugIsOn)

{

console.println ("Entering function: myFunction") ;

console.println(" Parameter 1: n = " + n);
console.println(" Parameter 2: m = " + m);
if (debugIsOn) console.println(" Return value: rtn = " + rtn);

return rtn;

clear

Clears the console windows buffer of any output.

Parameters

None

Returns

Nothing

Data Object

5.0

The data object is the representation of an embedded file or data stream that is stored in
the document. Data objects are stored in the name tree in the document. See the section
on the Names Tree and Embedded File Streams in the PDF Reference for details.

Acrobat JavaScript Scripting Reference 103

- Acrobat JavaScript Scripting Reference
Data Properties

Data objects can be inserted from the external file system, queried, and extracted. This is a
good way to associate and embed source files, metadata, and other associated data with a
document.

See the following Doc Object properties and methods:
createDataObject,dataObjects, exportDataObject, getDataObject,
importDataObject, removeDataObject.

Note: While the methods for data objects were implemented in Acrobat 5.0, the ability to
use these in an Adobe Reader-extended context only became available in Acrobat
6.0.

Data Properties

creationDate

The creation date of the file that was embedded.

Type: Date Access:R.

modDate

The modification date of the file that was embedded.

Type: Date Access:R.

MIMEType
The MIME type associated with this data object.
Type: String Access:R.

name
The name associated with this data object.
Type: String Access:R.

Example

console.println ("Dumping all data objects in the document.");

var d = this.dataObjects;

for (var 1 = 0; i < d.length; i++)
console.println("DataObject [" + 1 + "]=" + d[i] .name);

104 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
DataSourcelnfo Generic Object

path

The device-independent path to the file that was embedded.
Type: String Access:R.

size
The size, in bytes, of the uncompressed data object.

Type: Number Access:R.

DataSourcelnfo Generic Object

This generic JS object contains basic information about a particular database. The
ADBC.getDataSourceList method returns an array of these objects. The object has
the following properties.

Property Type Access Description

name String R A string that represents the identifying name of a
database. This string could be passed to
newConnection to establish a connection to
the database that the DataSourcelnfo object is
associated with.

description String R A string that contains database dependent
information about the database.

Dbg Object

The dbg object is used to optionally control the JavaScript Debugger from a command-line
console standpoint. The same functionality provided by the buttons in the JavaScript
Debugger dialog toolbar available from the dbg methods. In addition, breakpoints can be
created, deleted and inspected using the dbg object.

The dgb object and the JavaScript Debugger are only available in Acrobat Pro.

Acrobat JavaScript Scripting Reference 105

- Acrobat JavaScript Scripting Reference
Dbg Properties

Nortes: Should the viewer lock up during a debugging session, pressing the Esc-key may
resolve the problem.

Debugging is not possible with a model dialog open, this occurs, for example, when
debugging a batch sequence.

Debugging script with an running event initiated by either app.setInterval or
app.setTimeOut may cause a recurring alert boxes to appear. Use the Esc-key
after the model dialog is dismissed to resolve the problem.

Dbg Properties

bps
6.0 (P)

Returns an array of Breakpoint Generic Objects, each element corresponding to a
breakpoint set in the debugger.
Type: Array Access:R.

Breakpoint Generic Object

This generic JS object contains basic information about a breakpoint, and is returned by the
Dbg.bps property. It contains the following properties and methods:.

Property Type Access Description

fileName string R A string that identifies the script in the
debugger.

condition string R A JavaScript expression evaluated whenever

the debugger has to decide to stop or not at
a breakpoint. Used to create conditional
breakpoints. The default value for this
property is the string "true”.

lineNum number R The line number in the script for which the
breakpoint is set.

Method Parameters Returns Description
toString none String A string describing the breakpoint.
Example

List all currently active breakpoints.
var db = dbg.bps

106 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Dbg Methods

for (var i = 0; i1 < db.length; i++)
{

for (var o in db[i]) console.println(o + ": " + db[i] [0]);
console.println("---------------"-""--—-———-- oo ") ;

}

See sb for another example of usage.

Dbg Methods

6.0 (P)

The ¢ (continue) method resumes execution of a program stopped in the debugger. The

JavaScript program may either stop again, depending on where the breakpoints are set, or
reach execution end.

Parameters

None

Returns

Nothing

cb
60 | © (P}

The cb (clear breakpoint) method clears a breakpoint in the debugger.

Parameters
fileName The name of the script from where the breakpoint is going to be
deleted.
lineNum The line number for the breakpoint that is going to be cleared in the
script.
Returns
Nothing

Acrobat JavaScript Scripting Reference

107

- Acrobat JavaScript Scripting Reference
Dbg Methods

q
6.0 Q

The g (quit) method quits debugging and executing the current JavaScript. It additionally
dismisses the debugger dialog.

Parameters

None

Returns

Nothing

sb
60 | ® Q

The sb (set breakpoint) method sets a new breakpoint in the debugger.

Parameters
fileName The name of the script where the breakpoint is to be set.
lineNum The line number where the breakpoint is going to be created in the
script
condition (optional) a JavaScript expression evaluated every time the
debugger reaches a breakpoint . The decision to stop or not at a
breakpoint is based on the result of evaluating such expression. If the
expression evaluates to true, the debugger will stop at the
breakpoint. If the expression evaluates to £alse, the debugger
continues executing the script and will not stop at the breakpoint.
The default value for this parameter is the string "true".
Returns
Nothing
Example 1

Some script is run and an exception is thrown due to some error. A breakpoint is
programmatically set using the information given in the error message.

SyntaxError: missing ; before statement 213:Document-Level: myDLJS
// now set a breakpoint using the console
dbg. sb ({

fileName: "Document-Level: myDLJS",

lineNum: 213,

condition: "true"

108

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Dbg Methods

1)
Example 2

This example simulates the functionality of the “Store breakpoints in PDF file’ checkbox in
the Preferences > JavaScript dialog.

// save breakpoints in PDF file
this.addScript ("myBreakpoints", "var myBPS = " + dbg.bps.toSource()) ;

// now reset the breakpoints
for (var 1 = 0; i < myBPS.length; i++) dbg.sb(myBPS[i]);

Example 3

Set a conditional break. Consider the following code, which is a mouse up action.

for (var i=0; 1<100; i++)
myFunction (i) ; // defined at document level

// In the console, set a conditional break. Here, we break when the
// index of the loop is greater than 30.
dbg. sb ({

fileName: "AcroForm:Buttonl :Annotl:MouseUp:Actionl",

lineNum:2,

condition:"i > 30"

6.0 (P)

The si (step in) method advances the program pointer to the next instruction in the
JavaScript program, entering each function call that is encountered, and for which there is a
script defined. Native JavaScript calls cannot be stepped into.

Parameters

None

Returns

Nothing

sn

6.0 Q

The sn (step instruction) method advances the program pointer to the next byte-code in
the JavaScript program. Each JavaScript instruction is made up of several byte-codes as
defined by the JavaScript interpreter.

Acrobat JavaScript Scripting Reference 109

- Acrobat JavaScript Scripting Reference
Directory Object

Parameters

None

Returns

Nothing

SO

6.0 (P)

The so (step out) method executes the program until it comes out of the current function.
It stops executing in the instruction immediately following the call to the function. If the

scope currently under debug is the top level scope, the program may continue executing
until it ends, or stop again when it reaches a breakpoint.

Parameters

None

Returns

Nothing

SV

6.0 (P)

The sv (step over) method advances the program pointer to the next instruction in the

JavaScript program. If a function call is encountered, the debugger will not step into the
instructions defined inside that function.

Parameters
None
Returns

Nothing

Directory Object
6.0 S

Directories are a repository of user information, including public-key certificates. Directory
Objects provide directory access and are obtained using the directories property or
the newDirectory method of the SecurityHandler Object.

110

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

Directory Properties

Acrobat 6.0 provides several directories. The Adobe.AAB Security Handler has a single
directory named Adobe.AAB.AAB. This directory provides access to the local Acrobat
Address Book, also called the Trusted Identity Store. On Windows, the Adobe.PPKMS Security
Handler provides access, via Microsoft Active Directory Script Interface (ADSI) to as many
directories as have been created by the user. These directories are created sequentially with
names Adobe . PPKMS. ADST.dir0, Adobe.PPKMS.ADST .dirl, and so on.

NoTe:)Security ®) This object can only be obtained from a SecurityHandler Object and is
thus governed by the security restrictions of the SecurityHandler Object.The
Directory Object is therefore available only for batch, console, application
initialization and menu execution, including in Acrobat Reader.

Directory Properties

info

6.0 ®

The value of this property is a Directorylnformation Generic Object, a generic object used
to set and get the properties for this Directory Object.

Type: Object Access: R/W.

Example

// Create and activate a new directory

var oDirInfo = { dirStdEntryID: "diro0",
dirStdEntryName: "Employee LDAP Directory",
dirStdEntryPrefDirHandlerID: "Adobe.PPKMS.ADSI",
dirStdEntryDirType: "LDAP",
server: "ldapO.acme.com",
port: 389 };

var sh = security.getHandler("Adobe.PPKMS") ;

var newDir = sh.newDirectory() ;

newDir.info = oDirInfo;

Acrobat JavaScript Scripting Reference 111

- Acrobat JavaScript Scripting Reference
Directory Properties

Directorylnformation Generic Object

A directory information object is a generic object representing the properties for a
directory and has the following standard properties:

Standard Directory Information Object properties

Property

Type

Access

Required Description

dirStdEntryID

dirStdEntryName

dirSstdEntryPrefDirHandlerID

dirStdEntryDirType

dirStdEntryVersion

String

String

String

String

String

R/W

R/W

R/W

R/W

Yes

Yes

No

No

No

A unique, language
independent name for the
directory. Must be
alphanumeric and can
include underscores,
periods and hyphens. For
new directory objects it is
suggested that the ID not
be provided, in which case
a new unique name will be
automatically generated.

A user friendly name for the
directory.

The name of the directory
handler that is to be used
by this directory. Security
handlers can support
multiple directory handlers
for multiple directory types
(eg. local directories, LDAP
directories).

The type of directory. An
example of this would be
LDAP, ADSI, WINNT.

The version of the data. The
default value is 0 if this is
not set by the directory. The
value for Acrobat 6.0
directories for the
Adobe.AAB and
Adobe.PPKMS.ADSI
directory handlers is
0x00010000.

112

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
Directory Properties

Directory information objects can include additional properties that are specific to a
particular directory handler. The Adobe.PPKMS.ADSI directory handler includes the
following additional properties:

Adobe.PPKMS.ADSI addtional directory information object properties
Property Type Access Description

server String R/W The server that hosts the data. For example,
addresses.employees.xyz.com.

port Number R/W The port number for the server. The standard
LDAP port number is 389.

searchBase String R/W Narrows down the search to a particular section
of the directory. An example of this would be
0=XYZ Systems,c=US.

maxNumEntries Number R/W The maximum number of entries that would be
retrieved in a single search.
timeout Number R/W The maximum time allowed for a search.
Example 1

Create and activate a new directory.

var oDirInfo = { dirStdEntryID: "diro0",
dirStdEntryName: "Employee LDAP Directory",
dirStdEntryPrefDirHandlerID: "Adobe.PPKMS.ADSI",
dirStdEntryDirType: "LDAP",
server: "ldapO.acme.com",
port: 389

}i

var sh = security.getHandler("Adobe.PPKMS") ;

var newDir = sh.newDirectory();

newDir.info = oDirInfo;

Example 2
Get information for existing directory.

var sh = security.getHandler ("Adobe.PPKMS") ;

var dir0 = sh.directories|[0];

// Get directory info object just once for efficiency

var dirO0OInfo = dir0.info;

console.println("Directory " + dirOInfo.dirStdEntryName) ;
console.println("address " + dirOInfo.server + ":" + dirOInfo.port);

Acrobat JavaScript Scripting Reference 113

- Acrobat JavaScript Scripting Reference
Directory Methods

Directory Methods

connect

6.0 ®

Returns a DirConnection Object thatis a connection to the directory with the
specified name. There can be more then one active connection for a directory.

See also DirConnection Object and the SecurityHandler Object’s directories

property.
Parameters
oParams (optional) A generic object that can contain parameters that are
necessary in order to create the connection. Properties of this object
are dependent on the particular directory handler and can include
useridand password.
bul (optional) A boolean value that defaults to £alse. It conveys to the
directory handler if it could bring its Ul in case that is required for
establishing the connection.
Returns

ADirConnection Object, ornull, if thereis no directory with the specified name.

Example:
Enumerate available directories and connect.

var sh = security.getHandler("Adobe.PPKMS") ;
var dirList = sh.directories;
var dirConnection = sh.dirList [0].connect () ;

DirConnection Object

6.0 ®

The DirConnection object represents an open connection to a directory: a repository of
user information, including public-key certificates. Directory connections are opened using
the Directory Object’s connect method. A directory with a particular name can have more
then one connection open at a time. All DirConnection objects must support all
properties and methods listed here, unless otherwise specified.

114 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

DirConnection Properties

NoTe: (Security ®) : This object can only be obtained from a Directory Object and is thus
governed by the security restrictions of the Directory Object.The
DirConnection Object is therefore available only for batch, console,
application init and menu exec, including in Acrobat Reader.

DirConnection Properties

canlist

6.0 ®

Indicates whether the directory connection is capable of listing all of its entries. Some
directories may contain too many entries for this operation to be practical.
Type: Boolean Access:R.

Example
The AAB directory allows listing of the local trusted identity list

var sh = security.getHandler("Adobe.AAB");
var dc = sh.directories[0] .connect () ;
console.println("CanList = " + dc.canList);

canDoCustomSearch

6.0 ®

Whether the directory connection supports search using directory-specific search
parameter attributes. As an example, directory-specific attributes for an LDAP directory
include: o (organization), c (country), cn (common name), givenname, sn (surname), uid, st,
postalcode, mail, and telephonenumber.

Type: Boolean Access:R.

canDoCustomUISearch

6.0 ®

Whether the directory connection supports search using its own custom user interface to
collect the search parameters.

Type: Boolean Access:R.

Acrobat JavaScript Scripting Reference 115

- Acrobat JavaScript Scripting Reference
DirConnection Properties
canDoStandardSearch

6.0 ®

Whether the directory connection supports search using standard search parameter
attributes. The standard attributes are

firstName
lastName
ful1Name
email
certificates

Some directory database implementations may not support these attributes, but directory
handlers are free to translate these attributes to names understood by the directory.

Type: Boolean Access:R.

groups

6.0 S

Returns an array of language dependent names for groups that are available through this
connection.

Type: Array Access:R.

name

6.0 ®

Returns the language independent name of the directory that this object is connected to.
An example of this would be Adobe . PPKMS . ADSI . dir0. All DirConnection objects
must support this property.

Type: String Access:R.

uiName

6.0 ®

Returns the language dependent string of the directory this object is connected to. This
string is suitable for user interfaces. An example of this would be XYZ's Employees. All
DirConnection objects must support this property.

Type: String Access: R.

116 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
DirConnection Methods

DirConnection Methods

search

6.0 ®

Searches the directory and returns an array of UserEntity Generic Objects that match the
search parameters. A UserEntity Generic Object is a generic object that contains properties
for all attributes that were requested via the setOutputFields method. If the
setOutputFields method is not called prior to a search it would return a UserEntity
Generic Object containing no entries.

Parameters

oParams (optional) A generic object containing an array of key-value pairs
consisting of search attribute names and their corresponding strings.

If oParams is not provided and canList is true for this directory
then all entries in the directory will be returned. If oParams is not
provided and canList is £alse, an exception occurs.

cGroupName (optional) The name of a group (not to be confused with Group
Objects). If specified then the search will be restricted to this group.

bCustom (optional) If £alse (the default), oParams contains standard search
attributes. The canDoStandardSearch property must be true,
or an exception occurs. If true, then oParams contains directory-
specific search parameters. The canDoCustomSearch property
must be true, or an exception occurs.

buIz (optional) If true, the handler shows user interface to allow
collection of search parameters. The results of the search are returned
by this method. canDoCustomUISearch mustalso be trueif bUT
is true, or an exception will occur. If bUT is specified then bCustom
must also be specified, though its value is ignored.

Returns

An array of UserEntity Generic Objects.

Example 1
Directory search

var sh = security.getHandler("Adobe.PPKMS") ;

var dc= sh.directories[0] .connect () ;

dc.setOutputFields({oFields: ["certificates","email"]})
var retVal = dc.search({oParams:{lastName:"Smith"}}) ;
if (retval.length)

console.println(retval[0] .email);

Acrobat JavaScript Scripting Reference 117

- Acrobat JavaScript Scripting Reference
DirConnection Methods

Example 2

List all entries in local Acrobat Address Book

var sh = security.getHandler("Adobe.AAB");
var dc = sh.directories[0] .connect () ;

if (dc.canList) {
var x = dc.sgearch();

for(j=0; j<x.length; ++j) {
console.println ("Entry[" + j + "] = " + x[j].fullName + ":");
for(i in x[j]) console.println(" " + i + " =" + x[j][i]);

Searches the directory and returns an array of users, along with their certificate

information.

UserEntity Generic Object

A generic JS object that describes a user in a directory and the user’s associated certificates.
It contains standard properties that have a specific meaning for all directory handlers.
Directory handlers translate these entries to the ones that are specific to them when
required. An array of these objects is returned by dirConnection. search.

It has the following properties.

Property Type Access Description
firstName String R/W The first name for the user.
lastName String R/W The last name of the user.
fullName String R/W The full name of the user.
certificates Array of R/W An array of certificates that belong
Certificate to this user. To find a certificate that
Objects is to be used for a particular use, the
caller should inspect the certificate’s
keyUsage property.
defaultEncryptCert Array of R/W The preferred certificate to use when

Certificate
Objects

encrypting documents for this user
entity. Routines that process User
Entity Objects will look first to
this property when choosing an
encryption certificate: if this
property is not set then the first valid
match in the certificates property

will be used.

118

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Doc Object

setOutputFields
6.0 ® O

Defines the list of attributes that should be returned when executing the search method.

Note: This method is not supported by the Adobe.AAB directory handler. Custom options
are not supported by the Adobe.PPKMS.ADSI directory handler.

Parameters

oFields An array of strings containing the names of attributes that should be
returned from the directory when calling the search method. The
names in this array must either be names of standard attributes that
can be used for all directory handlers, or custom attributes that are
defined for a particular directory. The standard attributes are the
property names defined for the UserEntity Generic Object. Directory
handlers can, when desired, translate standard attribute names to
names that it understands.

bCustom (optional) A boolean indicating that the names in oFields are
standard output attribute names. If true then the names represent
directory-specific attributes that are defined for a particular directory
handler. The default is false.

Returns
An array of strings, containing the names of attributes from oFields that are not
supported by this directory. An empty array is returned if the oFields array is empty.
Example
In this example, dc . setOutputFields () returns the array of strings ["x", "y"].

var sh = security.getHandler ("Adobe.PPKMS") ;

var dc = sh.directories[0] .connect () ;

var w = dc.setOutputFields(["certificates", "email", "x", "y"]);
console.println(w);

See also the examples that follow the DirConnection. search method

Doc Object

The JavaScript doc object provides the interfaces between a PDF document open in the
viewer and the JavaScript interpreter. It provides methods and properties of the PDF
document.

Acrobat JavaScript Scripting Reference 119

- Acrobat JavaScript Scripting Reference
Doc Properties

Doc Access from JavaScript

You can access the doc object from JavaScript in a variety of ways.

e The most common way is through the this Object, which usually points to the doc
object of the underlying document.

e Some properties and methods return doc objects; for example, activeDocs,
openbDoc, or extractPages all return doc objects.

e JavaScript is executed as a result of some event. For each event, an Event Object is
created. A doc object can often be accessed through event. target:

- Formouse, focus, blur, calculate validate and format events,
event. target returns the Field Object that initiated the event . You can then
access the doc object through £ield.doc.

— Forall other events, event. target points to the doc object.
Example 1: Access through this object
Use this to get the number of pages in this document:

var nPages = this.numPages;
// get the crop box for "this" document:
var aCrop = this.getPageBox() ;

Example 2: Access through return values
Return values from one document to open, modify, save and close another.

// path relative to "this" doc:

var myDoc = app.openbDoc ("myNovel.pdf", this);
myDoc.info.Title = "My Great Novel";

myDoc . saveAs (myDoc.path) ;

myDoc . closeDoc (true) ;

Example 3: Access through the event object.

For mouse, calculate, validate, format, focus, and blur events:
var myDoc = event.target.doc;

For all other events (for example, batch or console events):

var myDoc = event.target;

Doc Properties

alternatePresentations

6.0

References the document's AlternatePresentation Object. If the functionality needed to
display alternate presentations is not available, this property is undefined.

120 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

Doc Properties

The alternatePresentation object provides access to the document's alternate
presentations. The PDF language extension specifies that each document can potentially
have many named alternate presentations. Each alternate presentation with a known type
will have a corresponding doc.alternatePresentations property in the document.
This property should have the same name as its alternate presentation and should
reference its alternate presentation's AlternatePresentation Object. If there are no
recognized alternate presentations in the document, this object is empty (does not have
any properties).

Note: For compatibility with current implementation alternate presentation name must
be an ASClI string. The only alternate presentation type currently implemented is
"SlideShow".

See the AlternatePresentation Object for properties and methods that can be used to
control an alternate presentation.

Type: Object | undefined Access:R.

Example 1
Test whether the alternatePresentations object is present:

if (typeof this.alternatePresentations != "undefined")

{

// assume AlternatePresentations are present
// list the names of all alternate presentations in the doc
for (var ap in this.alternatePresentations) console.println(ap);

}

Example 2

Assume there is a named presentation “MySlideShow” within the document.

// oMySlideShow is an AlternatePresentation object
oMySlideShow = this.alternatePresentations["MySlideShow"] ;
oMySlideShow.start () ;

author

® | © (X)

The author of the document. See info, which supersedes this property in later versions.

Note: This property is read-only in Adobe Reader.

Type: String Access: R/W.

Acrobat JavaScript Scripting Reference 121

- Acrobat JavaScript Scripting Reference
Doc Properties

baseURL
50 | ©

The base URL for the document, used to resolve relative web links within the document.
See also URL.

Type: String Access: R/W.

Example

console.println("Base URL was " + this.baseURL) ;
this.baseURL = "http://www.adobe.com/products/";
console.println("Base URL is " + this.baseURL) ;

bookmarkRoot

5.0

The root bookmark for the bookmark tree. This bookmark is not displayed to the user; itis a

programmatic construct used to access the tree and the child bookmarks. See the
Bookmark Object an example of usage.

Type: object Access:R.

calculate

4.0

If true, allows calculations to be performed for this document. If £alse, prevents all
calculations from happening for this document. Its default value is true. This property
supersedes the app.calculate, whose use is now discouraged.
Type: Boolean Access: R/W.

creationDate

®

The document’s creation date. See info, which supersedes this property in later versions.

Type: Date Access:R.

122

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

Doc Properties

creator

®

The creator of the document (for example, "Adobe FrameMaker", "Adobe PageMaker", and
so on). See info, which supersedes this property in later versions.

Type: String Access:R.

dataObjects

5.0
An array containing all the named data objects in the document. See also the Data Object,
dataObjects, createDataObject, exportDataObject, getDataObject,
importDataObject, and removeDataObject.
Type: Array Access:R.
Example
var d = this.dataObjects;
for (var i = 0; i < d.length; i++)
console.println("Data Object[" + 1 + "]=" + d[i] .name);
delay
4.0

This boolean property can delay the redrawing of any appearance changes to every field in
the document. It is generally used to buffer a series of changes to fields before requesting
that the fields regenerate their appearance. When true, forces all changes to be queued
until delay is reset to £alse. Once set to false, all the fields on the page are redrawn.
See also the field.delay property.
Type: Boolean Access: R/W.

dirty

© (X)

This boolean property can be used to determine whether the document has been dirtied as
the result of a changes to the document, and therefore needs to be saved. It is useful to
reset the dirtyflag in a document when performing changes that do not warrant saving,
for example, updating a status field in the document.

Acrobat JavaScript Scripting Reference 123

- Acrobat JavaScript Scripting Reference
Doc Properties

Type: Boolean Access: R/W.

Example

var £ = this.getField("Status");

var b = this.dirty;

f.value = "Press the reset button to clear the form.";
this.dirty = b;

disclosed

5.05 S

A boolean property that determines whether the document should be accessible to
JavaScripts in other documents.

The two methods app . openDoc and app . activeDocs check the disclosed
property of the document before returning its Doc Object.

Note: (Security ®): The disclosed property can only be set during batch, console,
Page/Open and Doc/Open events. See the Event Object for a discussion of Acrobat
JavaScript events.

Type: Boolean Access: R/W.

Example

A document can be disclosed to others by placing the code at the document level (or as a
page open action) at the top level:

this.disclosed = true;

documentFileName

6.0

The base filename with extension of the document referenced by the doc object. The
device-independent path is not returned. See also pathand filesize.

Type: String Access:R.

Example
Executing the script

console.println("The filename of this document is "
+ this.documentFileName) ;

on this document, the Acrobat JavaScript Scripting Reference, yields

"The filename of this document is AcroJdS.pdf".

124 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

Doc Properties

external

4.0

Whether the current document is being viewed in the Acrobat application or in an external
window (such as a web browser).

Type: Boolean Access:R.

Example

if (this.external)

{

// viewing from a browser

// viewing in the Acrobat application.

filesize

The file size of the document in bytes.

Type: Integer Access:R.
Example (Version 5.0)

Get a readout of difference is file sizes before and after saving a document.

// add the following code to the "Document Will Save" section
var filesizeBeforeSave = this.filesize

console.println("File size before saving is " + filesizeBeforeSave) ;

// add the following code to the "Document Did Save" section
var filesizeAfterSave = this.filesize
console.println("File size after saving is " + filesizeAfterSave) ;
var difference = filesizeAfterSave - filesizeBeforeSave;
console.println("The difference is " + difference);
if (difference < 0)
console.println ("Reduced filesize!");
else
console.println("Increased filesizel!");

icons

5.0

An array of named Icon Generic Objects that are present in the document level named
icons tree.

Acrobat JavaScript Scripting Reference 125

- Acrobat JavaScript Scripting Reference
Doc Properties

See also addIcon, getIcon, importIcon, removeIcon, the Field Object properties
buttonGetIcon, buttonImportIcon, buttonSetIcon, and the lcon Generic

Object.
Type: Array Access:R.
Example 1
if (this.icons == null)
console.println("No named icons in this doc");
else
console.println("There are " + this.icons.length
+ " named icons in this doc");
Example 2

// list all named icons

for (var 1 = 0; i < this.icons.length; i++) {
console.println("icon[" + i + "]=" + this.icons[i] .name) ;

}

info

In Adobe Reader

5.0

For the Adobe Reader, returns an object with properties from the document information
dictionary in the PDF file. Standard entries are:

Title
Author
Subject
Keywords
Creator
Producer
CreationDate
ModDate
Trapped

See Table 8.2, “Entries in a document information dictionary,” in the PDF Reference, for
more details.

Writing to any property in this object in the Adobe Reader throws an exception.

Type: object Access:R.

Example

// get title of document
var docTitle = this.info.Title;

126 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

Doc Properties

In Acrobat

50 | © (X

For Acrobat, properties of the info object are writeable, and setting a property in this
object will dirty the document. Additional document information fields can be added by
setting non-standard properties.

NoTe: Standard entries are case insensitive, that is, doc . info.Keywords is the same as
doc.info.keywords.

Type: object Access: R/W.

Example
The following script

this.info.Title = "JavaScript, The Definitive Guide";
this.info.ISBN = "1-56592-234-4";
this.info.PublishDate = new Date () ;
for (var i in this.info)

console.println(i + ": "+ this.infol[i]);

could produce the following output:

CreationDate: Mon Jun 12 14:54:09 GMT-0500 (Central Daylight Time) 2000
Producer: Acrobat Distiller 4.05 for Windows

Title: JavaScript, The Definitive Guide

Creator: FrameMaker 5.5.6pl45

ModDate: Wed Jun 21 17:07:22 GMT-0500 (Central Daylight Time) 2000
SavedBy: Adobe Acrobat 4.0 Jun 19 2000

PublishDate: Tue Aug 8 10:49:44 GMT-0500 (Central Daylight Time) 2000
ISBN: 1-56592-234-4

keywords

® | © (X)

The keywords that describe the document (for example, "forms", "taxes", "government”).
See info, which supersedes this property in later versions.

Note: This property is read-only in the Adobe Reader.

Type: object Access: R/W.

Acrobat JavaScript Scripting Reference 127

- Acrobat JavaScript Scripting Reference
Doc Properties

layout

5.0

Changes the page layout of the current document. Valid values are:

SinglePage
OneColumn
TwoColumnLeft
TwoColumnRight

In Acrobat 6.0, there are two additional properties:

TwoPageLeft
TwoPageRight

Type: String Access: R/W.

metadata

6.0 (X)

Allows you to access the XMP metadata embedded in a PDF document. Returns a string
containing the XML text stored as metadata in a particular PDF document. For information
on embedded XMP metadata, see section 9.6 of the PDF Reference. This property throws a
RaiseError if the user tries to set the property to a string that is not in the XMP
metadata format.

Type: String Access: R/W.

Exceptions

RaiseError is thrown if setting metadata to a string not in XMP format.

Example 1
Try to create metadata not in XMP format.

this.metadata = "this is my metadata";
RaiseError: The given metadata was not in the XMP format
Global .metadata:1:Console undefined:Exec

===> The given metadata was not in the XMP format

Example 2
Create a PDF report file with metadata from a document.

var r = new Report () ;
r.writeText (this.metadata) ;

r.open ("myMetadataReportFile") ;
r.save(); // save or mail the metadata report
r.mail () ;

128 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
Doc Properties

modDate

®

The date the document was last modified. See info, which supersedes this property in
later versions.

Type: Date Access:R.
numFields
4.0
The total number of fields in the document. See also getNthFieldName.
Type: Integer Access:R.
Example
console.println ("There are " + this.numFields + " in this document") ;
numPages
The number of pages in the document.
Type: Integer Access:R.
Example
console.println ("There are " + this.numPages + " in this document") ;
numTemplates

®

The number of templates in the document. See templates, which supersedes this
property in later versions.

Type: Integer Access:R.

path

The device-independent path of the document, for example /c/Program
Files/Adobe/Acrobat 5.0/Help/AcroHelp.pdf.See Section 3.10.1, “File
Specification Strings’, in the PDF Reference for exact syntax of the path.

Type: String Access:R.

Acrobat JavaScript Scripting Reference 129

- Acrobat JavaScript Scripting Reference
Doc Properties

pageNum
Gets or sets a page of the document. When setting the pageNum to a specific page,
remember that the values are 0-based.
Type: Integer Access: R/W.

Example
This example goes to the first page of the document.
this.pageNum = 0;
This example advances the document to the next page.

this.pageNum++;

permStatusReady

6.0

Indicates whether the permissions for this document have been resolved. This can return
falseif the document is not available, for example when downloading over a network

connection, and permissions are determined based on a signature that covers the entire

document. Such documents will be signed with an author signature.

Type: Boolean Access:R.

producer

®

The producer of the document (for example, "Acrobat Distiller’, "PDFWriter", and so on). See
info, which supersedes this property in later versions.

Type: String Access:R.
securityHandler
5.0

The name of the security handler used to encrypt the document. Returns null if there is
no security handler (for instance, the document is not encrypted).

Type: String | null Access:R.

Example
console.println(this.securityHandler != null ?

130 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

Doc Properties

"This document is encrypted with " + this.securityHandler
+ " security." : "This document is unencrypted.");

This could print out the following if the document was encrypted with the standard
security handler.

This document is encrypted with Standard security.

selectedAnnots

5.0 (ARNX)

An array of Annot Objects corresponding to every markup annotation the user currently
has selected.

See also getAnnot and getAnnots.

Type: Array Access:R.

Example
Show all the comments of selected annots in console.

var aAnnots = this.selectedAnnots;
for (var i1=0; i < aAnnots.length; i++)
console.println (aAnnots[i] .contents) ;

sounds
5.0
An array containing all of the named Sound Objects in the document.
See also getSound, importSound, deleteSound, and the Sound Object.
Type: Array Access:R.
Example

var s = this.sounds;
for (i = 0; 1 < s.length; i++)
console.println("Sound[" + i + "]=" + s[i] .name) ;

Acrobat JavaScript Scripting Reference 131

- Acrobat JavaScript Scripting Reference
Doc Properties

spellDictionaryOrder

5.0

Gets or sets the dictionary array search order for this document. For example, if a user is
filling out a Medical Form the form designer may want to specify a Medical dictionary to be
searched first before searching the user’s preferred order.

The Spelling plug-in searches for words first in this array, and then searches the dictionaries
the user has selected on the Spelling Preference panel. The user’s preferred order is
available from spell.dictionaryOrder. An array of the currently installed
dictionaries can be obtained using spell.dictionaryNames.

NoTe: When setting this property, an exception is thrown if any of the elements in the
array is not a valid dictionary name.

Type: Array Access: R/W.

spellLanguageOrder
6.0 (X

This property can be used to access or specify the language array search order for this
document. The Spelling plug-in will search for words first in this array and then in will
search the languages the user has selected on the Spelling Preferences panel. The user’s
preferred order is available from the spell.languageOrder. An array of currently
installed languages can be obtained using the spell.languages property.

Type: Array Access: R/W.

subject

® | © (X)

The document’s subject. See info, which supersedes this property in later versions.

Note: This property is read-only in Adobe Reader.

Type: String Access: R/W.

templates

5.0

An array of all of the Template Objects in the document. See also createTemplate,
getTemplate an removeTemplate.

132 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

Doc Properties

Type: Array Access:R.

Example
List all templates in the document.

var t = this.templates
for (var i=0; i<t.length; i++)

{

var state = (t[i].hidden) ? "vigible" : "hidden"
console.println("Template: \"" + t[i] .name
+ "\", current state: " + state);

title
X | © (X

The title of the document. See info, which supersedes this property in later versions.

Note: This property is read-only in Adobe Reader.

Type: String Access: R/W.

URL

5.0

The document’s URL. If the document is local, returns a URL with a file:///
scheme. This may be different from the baseURL.
Type: String Access:R.

Zoom
Gets or sets the current page zoom level. Allowed values are between 8.33% and 6400%,
specified as an percentage number, for example, a zoom value of 100 specifies 100%..
Type: Number Access: R/W.

Example

This example zooms in to twice the current zoom level.
this.zoom *= 2;
This sets the zoom to 200%.

this.zoom = 200;

Acrobat JavaScript Scripting Reference

133

- Acrobat JavaScript Scripting Reference
Doc Methods

zoomType

The current zoom type of the document. Valid zoom types are:

none

fit page

fit width

fit height

fit visible width
ReflowWidth (Acrobat 6.0) .

A convenience zoomtype object defines all the valid zoom types. It provides the following

zoom types:
Zoom Type Keyword
NoVary zoomtype.none
FitPage zoomtype. fitP
FitWidth zoomtype. £itW
FitHeight zoomtype. fitH
FitVisibleWidth zoomtype. £itV
Preferred zoomtype.pref
ReflowWidth zoomtype.refW
Type: String Access: R/W.
Example

This example sets the zoom type of the document to fit the width.

this.zoomType = zoomtype.fitW;

Doc Methods

addAnnot
50 | © X B X)

Creates an annot object having the specified properties. Properties not specified are given
their default values for the specified type of annotation.

134 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

Doc Methods
Parameters
objectLiteral A generic object which specifies the properties of the annot
object, such as type, rect, and page, to be created.
Returns

The new Annot Object.

Example 1
This example creates a "Square" annotation.
var sqannot = this.addAnnot ({type: "Square", page: 0});
This is a minimal example; sgannot will be created as annotation of type "Square" located
on the first page (0-based page numbering).

Example 2

var annot = this.addAnnot ({
page: O,
type: "Square",
rect: [0, O, 100, 100],
name: "OnMarketShare",
author: "A. C. Robat",
contents: "This section needs revision."

addField
50 | © Q

Creates a new form field and returns it as a Field Object.

Note: (@, version 6.0): Beginning with version 6.0, doc . addField can now be used
from within Adobe Reader for documents with “Advanced Form Features”.

Parameters

cName The name of the new field to create. This name can use the dot
separator syntax to denote a hierarchy (for example, name. last
creates a parent node, name, and a child node, last).

cFieldType The type of form field to create. Valid types are:
text
button
combobox
listbox
checkbox
radiobutton
signature

Acrobat JavaScript Scripting Reference 135

136

Acrobat JavaScript Scripting Reference
Doc Methods

nPageNum

The 0-based index of the page to which to add the field.

oCoords An array of four numbers in rotated user space that specifies the size
and placement of the form field. These four numbers are the
coordinates of the bounding rectangle, in the following order: upper-
left x, upper-left y, lower-right x and lower-right y. See also

field.rect.

Note: If you use the Info panel to obtain the coordinates of the
bounding rectangle, you must transform them from info space
to rotated user space. To do this, subtract the info space y-
coordinate from the onscreen page height.

Returns

The newly created Field Object.

Example

The following code might be used in a batch sequence to create a navigational icon on
every page of a document, for each document in a selected set of documents.

var inch = 72;

for (var p = 0; p < this.numPages; p++) {

// position rectangle (.5 inch,

var aRect = this.getPageBox({nPage: p});
// from upper left hand corner of page.
aRect [0] +.5*%1inch; // Make it .5 inch wide

aRect [0] += .5*inch;

aRect [2] =
aRect [1] -= .5*inch;
aRect [3] = aRect[1l] - 24;

// and 24 points high

// now construct button field with a right arrow from ZapfDingbats

var £ = this.addField("NextPage",
.setAction ("MouseUp", "this.pageNum++") ;

.delay = true;
.borderStyle = border.s;
.highlight = "push";
.textSize = 0;

.textColor = color.blue;
.fillColor = color.ltGray;
.textFont = font.ZapfD
.buttonSetCaption ("\341")
.delay = false;

Fh Fh Fh Fh Fh Fh FhoFh Hh o Fh

}

See field. setAction for another example.

// auto sized

"button", p, aRect)

// a right arrow

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Doc Methods

addlcon

50 | ®

Adds a new named Icon Generic Object to the document-level icon tree, storing it under
the specified name.

See also icons, getIcon, importIcon, removeIcon, and the £ield methods
buttonGetIcon, buttonImportIcon, and buttonSetIcon.

Parameters
cName The name of the new object
icon The Icon Generic Object to add.
Returns
Nothing
Example

This example takes an icon already attached to a form button field in the document and
assigns a name to it. This name can be used to retrieve the icon object with a getIcon for
use in another button, for example.

var f = this.getField("myButton") ;
this.addIcon ("myButtonIcon", f.buttonGetIcon()) ;

addLink
60 | © (X

Adds a new link to the specified page with the specified coordinates, if the user has
permission to add links to the document. See also getLinks, removeLinks and the

Link Object.
Parameters
nPage The page on which to add the new link.
oCoords An array of four numbers in rotated user space that specifies the size
and placement of the link. These four numbers are the coordinates of
the bounding rectangle, listed in the following order: upper-left x,
upper-left y, lower-right x and lower-right y.
Returns

The newly created Link Object.

Acrobat JavaScript Scripting Reference 137

138

Acrobat JavaScript Scripting Reference

Doc Methods

Example 1

Create simple navigational links in the lower left and right corners of each page of the
current document. The link in lower left corner goes to the previous page; the one in the
lower right corner goes to the next page.

var linkWidth = 36, linkHeight = 18;
for (var i=0; i < this.numPages; i++)

{

}

var
var
var
var
var
var
var
var
var

lhLink.

cropBox = this.getPageBox ("Crop",
linkRectl =
offsetLink = cropBox[2]
linkRect2 =
1hLink = this.addLink (i,
rhlink = this.addLink (i,
nextPage = (i + 1) %
prevPage = (i - 1) % this.numPages;
prevPage (prevPage>=0) ? prevPage

- cropBox [0]

linkRectl) ;
linkRect?2) ;
this.numPages;

1hLink.borderColor = color.red;
lhLink.borderWwidth = 1;

rhlink.

rhlLink.borderColor = color.red;
rhLink.borderWidth = 1;

i);
[0,1linkHeight, 1linkWidth, 0] ;

- linkwWidth;

[offsetLink, linkHeight,linkWidth + offsetLink, 0]

-prevPage;

setAction("this.pageNum = " + prevPage) ;

setAction("this.pageNum = " + nextPage) ;

See the Link Object for setting the properties and for setting the action of a link.

Example 2

Search through the document for the word “Acrobat” and create a link around that word.

for (var p = 0; p < this.numPages; p++)

{

var
for

{

numWords =
(var 1=0;

this.getPageNumWords (p) ;
i<numWords; i++)

var ckWord = this.getPageNthWord (p, i, true);

if

{

(ckWord == "Acrobat")

var g = this.getPageNthWordQuads (p, 1) ;
// convert quads in default user space to rotated

// user space used by Links.
m =
mInv = m.invert ()

r = mInv.transform(q)
r=r.toString()

r = r.split(",");

1 = addLink(p, [r[4], r[5],
1.borderColor = color.red
1.borderWidth = 1

1

r(2],

(new Matrix2D) .fromRotated (this,p) ;

r[31]1);

.setAction("this.getURL ('http://www.adobe.com/"') ;") ;

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Doc Methods

}
The Matrix2D object and its methods are defined in the Annots. js file.

addRecipientListCryptFilter
60 OO | O

This method adds a crypt filter to this document. The crypt filter is used for encrypting Data
Objects.

See also the cCryptFilter parameter of the importDataObject and
createDataObject methods.

NoTe: (Security ®):can only be executed during batch, application initialization, menu or
console events. Not available in the Adobe Reader.

Parameters

cCryptFilter Thelanguageindependent name of the crypt filter. This same name
should be used as the value of the cCryptFilter parameter of
the Doc Object importDataObject and
createDataObject methods.

oGroup An array of Group Objects that lists the recipients for whom the data
is to be encrypted.

Returns

Nothing
Example

This script takes the current document open in the viewer, and encrypts and embeds the
document into a "ePaper" envelope PDF document. This script was executed in the console,
butis perhaps best executed a folder JavaScript as part of larger script for sending PDF docs
in a secure way.

var Note = "Select the list of people that you want to send this"
+ " document to. Each person must have both an email address"
+ " and a certificate that you can use when creating the"
+ "envelope.";

var oOptions = { bAllowPermGroups: false, cNote: Note,
bRequireEmail: true };

var oGroups = security.chooseRecipientsDialog(oOptions) ;

var env = app.openDoc("/c/temp/ePaperMailEnvelope.pdf") ;

env.addRecipientListCryptFilter ("MyFilter", oGroups);

env.importDataObject ("secureMailO", this.path, "MyFilter");

var envPath = "/c/temp/outMail.pdf";

env.saveAs (envPath) ;

Acrobat JavaScript Scripting Reference 139

- Acrobat JavaScript Scripting Reference
Doc Methods

addScript
60 | ® X

Sets a document-level script for a document. See also setAction, setPageAction,
bookmark.setAction, and field. setAction.

Parameters
cName The name of the script that will be added. If a script with this name
already exists, the new script replaces the old one.
cScript The JavaScript expression that is to be executed when the document
is opened.
Returns
Nothing
Example

Create a beeping sound every time the document is opened.

this.addScript ("My Code", "app.beep(0);");

addThumbnails
50 | © (X)

Creates thumbnails for the specified pages in the document. See also

removeThumbnails.
Parameters
nStart (optional) A 0-based index that defines the start of an inclusive range

of pages. If nStart and nEnd are not specified then the range of
pages is for all pages in the document. If only nStart is specified
then the range of pages is the single page specified by nStart.

nEnd (optional) A 0-based index that defines the end of an inclusive range
of pages. If nStart and nEnd are not specified then the range of
pages is for all pages in the document. If only nEnd is specified then
the range of a pages is 0 to nEnd.

Returns

Nothing

140 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Doc Methods

addWeblinks
50 | © (X)

Scans the specified pages looking for instances of text with an http: scheme and
converts them into links with URL actions. See also removeWeblinks.

Parameters

nStart (optional) A 0-based index that defines the start of an inclusive range
of pages. If nStart and nEnd are not specified then the range of
pages is for all pages in the document. If only nStart is specified
then the range of pages is the single page specified by nStart.

nEnd (optional) A 0-based index that defines the end of an inclusive range
of pages. If nStart and nEnd are not specified then the range of
pages is for all pages in the document. If only nEnd is specified then
the range of a pages is 0 to nEnd.

Returns

The number of web links added to the document.

Example

var numWeblinks = this.addWeblinks () ;

console.println ("There were " + numWeblinks +
" instances of text that looked like a web address,"
+" and converted as such.");

bringToFront

5.0

Brings the document open in the Viewer to the front, if it is not already there.

Parameters

None

Returns

Nothing

Example

This example searches among the documents open in the Viewer for the document with a
title of "Annual Report" and brings it to the front.

var d = app.activeDocs; // lists only disclosed documents
for (var i = 0; i < d.length; i++)
if (d[i] .info.Title == "Annual Report") d[i] .bringToFront () ;

Acrobat JavaScript Scripting Reference 141

- Acrobat JavaScript Scripting Reference
Doc Methods

calculateNow

Forces computation of all calculation fields in the current document.

Parameters

None

Returns

Nothing

closeDoc

5.0 (S)

Closes the document.

Note: (Document Save Rights ©): For Adobe 5.1 Reader or later, the method is always
allowed. However, if the document was changed and no Document Save Rights are
available, the document is closed without any warnings and changes are lost. If
Document Save Rights are available, the user gets the option of saving the changed
file. It is important to use this method carefully as it is an abrupt change in the
document state that can affect any JS executing after the close. Triggering this
method from a Page event or Document event could cause the application to
behave strangely.

Parameters
bNoSave (optional) Whether to close the document without saving. If false

(the default), the user is prompted to save the document if it has been
modified. If true, the document is closed without prompting the
user and without saving, even if the document has been modified.
Because this can cause data loss without user approval, use this
feature judiciously.

Returns

false
Example

Create a series of three test files and save them to a directory. This code needs to be
executed in the console, because saveAs has a security restriction.

var myDoc = app.newDoc () ;

for (var i=0; i<3; i++) {
myDoc.info.Title = "Test File " + 1i;
myDoc.saveAs ("/c/temp/test"+i+" .pdf) ;

}

myDoc . closeDoc (true) ;

142 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Doc Methods

See saveAs for an another example of closeDoc.

createDataObject
50 | © Q

Creates a Data Object.

Data objects can be constructed ad hoc. This is useful if the data is being created in
JavaScript from sources other than an external file (for example, ADBC database calls). See
also dataObjects, exportDataObject, getDataObject, importDataObject,
removeDataObject, and the Data Object.

Parameters
cName The name to associate with the data object.
cValue A string containing the data to be embedded.
CMIMEType (optional) The MIME type of the data. Default is "text/plain”.

cCryptFilter (optional, version 6.0) The language independent name of a crypt
filter to use when encrypting this data object. This crypt filter must
have previously been added to the document’s list of crypt filters,
using the Doc Object addRecipientListCryptFilter method, otherwise
an exception will be thrown. The predefined "Identity™" crypt filter
can be used if it is desired that this data object not be encrypted in a
file that is otherwise encrypted by the Doc Object
encryptForRecipients method.

Returns

Nothing

Example
this.createDataObject ("MyData", "This is some data.");

See also the example that follows addRecipientListCryptFilter.

createTemplate

50 ©]®] 0

Creates a visible template from the specified page. See also templates, the
getTemplate, removeTemplate, and the Template Object.

NoTe: (Security ®): This method can only be executed during batch, console, or menu
events. See the Event Object for a discussion of Acrobat JavaScript events.

Acrobat JavaScript Scripting Reference 143

- Acrobat JavaScript Scripting Reference
Doc Methods

Parameters
cName The name to be associated with this page.
nPage (optional) The 0-based index of the page to operate on. Default is 0,
the first page in the document.
Returns

The newly created Template Object.

Example

Convert all pages beginning witih page 2 (base 0) to hidden templates. We have to be a
little careful, as the templates are hidden, this.numPages is updated to reflect that
change in the number of (visible) pages. Notice that in the loop below, only page 2 is made
a template then hidden; the next page will become the new page 2.

numNewTemplates = this.numPages - 2;
for (var i = 0; i1 < numNewTemplates; i++)

{

var t = this.createTemplate ({cName: "myTemplate"+i, nPage:2 });
t.hidden = true;

deletePages

50 | © Q

Deletes pages from the document. If neither page of the range is specified, the first page
(page 0) is deleted. See also insertPages, extractPages and replacePages.

Note: You cannot delete all pages in a document: there must be at least one page
remaining.

Note: (@, version 6.0): Beginning with version 6.0, doc . deletePages can now delete
spawned pages from within Adobe Reader for documents with “Advanced Form

Features”.
Parameters
nStart (optional) The 0-based index of the first page in the range of pages to
be deleted. Default is 0, the first page in the document.
nEnd (optional) The last page in the range of pages to be deleted. If nEnd is
not specified then only the page specified by nStart is deleted.
Returns
Nothing

144 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
Doc Methods

Example
Delete pages 1 through 3 (base 0), inclusive
this.deletePages ({nStart: 1, nEnd: 3});

deleteSound

50 | ® o

Deletes the sound object with the specified name from the document. See also sounds,
getSound, importSound, and the Sound Object.

Parameters

cName The name of the sound object to delete.

Returns

Nothing

Example
this.deleteSound ("Moo") ;

encryptForRecipients

0 |©®| 0

Encrypts the document for the specified lists of recipients, using the public-key certificates
of each recipient. Encryption does not take place until the document is saved. Recipients
can be placed into groups, and each group can have its own unique permission settings.
This method throws an exception if it is unsuccessful.

NOTE: (Security@): This method is available from batch, console, app initialization and
menu events. It is also available in the Adobe Reader

See also:
e The security.chooseRecipientsDialog method.
e The Data Object.

e createDataObject.

Parameters

oGroups (optional) An array of generic Group Objects that list the recipients for
which the document is to be encrypted.

Acrobat JavaScript Scripting Reference 145

- Acrobat JavaScript Scripting Reference
Doc Methods

bMetaData (optional) Whether document meta data should be encrypted. The
default value is true. Setting this value to £alse will produce a
document that can only be viewed in Acrobat 6.0 or later.

bul (optional) When true, the handler displays the user interface, in
which the user can select the recipients for whom to encrypt the
document. The default value is false.

Returns

true, if successful, otherwise an exception is thrown.

Group Object

A generic JS object that allows a set of permissions to be attached to a list of recipients for
which a document or data is to be encrypted. This object is passed to
doc.encryptForRecipients, and returned by
security.chooseRecipientsDialog. It contains the following properties:

Property Description
permissions A Group Object with the permissions for the group.
userEntities An array of UserEntity Generic Objects, the users to whom the

permissions apply.

Permissions Object

A generic JS object that contains a set of permissions, used in a Group Object. It contains
the following properties. The default value for all properties is false.

Property Type Access Description

allowAll Boolean R/W Whether full, unrestricted access is
permitted. If true, overrides all other
properties.

allowAccessibility Boolean R/W Whether content access for the visually

impaired is permitted. When true, allows
content to be extracted for use by
applications that, for example, read text
aloud.

allowContentExtraction Boolean R/W Whether content copying and extraction is
permitted.

146 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Doc Methods

Property Type Access Description

allowChanges String R/W What changes are allowed to be made to
the document. Values are:
nomne
documentAssembly
fillAndSign
editNotesFillAndSign
all

allowPrinting String R/W What the allowed printing security level is
for the document. Values are:

none
lowQuality
highQuality

Example

Encrypt all strings and streams in the document. This will produce a file that can be opened
with Acrobat 5.0

var sh = security.getHandler("Adobe.PPKMS") ;
var dir = sh.directories|[0];
var dc = dir.connect () ;

dc.setOutputFields ({oFields: ["certificates"]});
var importantUsers = dc.search({oParams:{lastName:"Smith" }});
var otherUsers = dc.search({oParams: {lastName:"jones" }});

this.encryptForRecipients({

oGroups : [

{ oCerts : importantUsers,

oPermissions : { allowAll : true } },
{ oCerts : otherUsers,

oPermissions : { allowPrinting : "highQuality" } } 1,
bMetaData : true });

exportAsText

6.0 ORI F)

Exports form fields as a tab-delimited text file to a local hard disk. The text file that is
created follows the conventions specified by Microsoft Excel. In particular,
exportAsText correctly handles quotes and multiline text fields.

NOTE: (Security@): If the cPath parameter is specified, this method can only be executed
during batch, console or menu events. See the Event Object for a discussion of
Acrobat JavaScript events.

Acrobat JavaScript Scripting Reference 147

- Acrobat JavaScript Scripting Reference
Doc Methods

Parameters

bNoPassword (optional) If true (the default), do not include text fields that
have the "password" flag set in the exported XFDF.

aFields (optional) The array of field names to submit or a string
containing a single field name.
e If specified, only these fields are exported, except those
excluded by bNoPassword.
e If aFieldsis an empty array, no fields are exported.
e If this parameter is omitted or is null, all fields in the form are
exported, except those excluded by bNoPassword.

cPath (optional) A string specifying the device-independent pathname
for the file. (See Section 3.10.1 of the PDF Reference for a
description of the device-independent pathname format.) The
pathname may be relative to the location of the current
document. If the parameter is omitted a dialog is shown to let the
user select the file.

NoOTE: (Security@): The parameter cPath is required to have a
Safe Path and have a . txt extension. This method will
throw a NotAllowedError (see the Error Objects)
exception if these security conditions are not met, and the
method will fail.

Returns

Nothing

exportAsFDF
4.0 ®| @

Exports form fields as an FDF file to the local hard drive.

NoTE: (Security@): If the cPath parameter is specified, then this method can only be
executed during batch, console, or menu events. See the Event Object for a
discussion of Acrobat JavaScript events.

Parameters

bAllFields (optional) If true, all fields are exported, including those that have
no value. Iffalse (the default), excludes those fields that currently
have no value.

bNoPassword (optional) If true (the default), do not include text fields that have
the "password" flag set in the exported FDF.

148 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
Doc Methods

aFields (optional) The array of field names to submit or a string containing a
single field name.
e If specified, only these fields are exported, except those excluded
by bNoPassword
e If aFieldsis an empty array, no fields are exported. The FDF
might still contain data, depending on the bAnnotations
parameter.
e If this parameter is omitted or is null, all fields in the form are
exported, except those excluded by bNoPassword
Specify non-terminal field names to export an entire subtree of
fields; see the example below.

bFlags (optional) If true, field flags are included in the exported FDF. The
defaultis false

cPath (optional) A string specifying the device-independent pathname for
the file. (See Section 3.10.1 of the PDF Reference for a description of
the device-independent pathname format.) The pathname may be
relative to the location of the current document. If the parameter is
omitted a dialog is shown to let the user select the file.

NoOTE: (Security@): The parameter cPath is required to have a Safe
Path and have a . £df extension. This method will throw a
NotAllowedError (see the Error Objects) exception if
these security conditions are not met, and the method will
fail.

bAnnotations (optional, version 6.0) If true, annotations are included in the
exported FDF. The defaultis false

Returns

Nothing

Example 1
Export the entire form (including empty fields) with flags.

this.exportAsFDF (true, true, null, true);

Example 2
Export the name subtree with no flags.
this.exportAsFDF (false, true, "name");

The example above illustrates a shortcut to exporting a whole subtree. Passing "name" as

part of the aFields parameter, exports "name. title’, "name. first’,
"name.middle" and 'name.last", and so on.

Acrobat JavaScript Scripting Reference 149

- Acrobat JavaScript Scripting Reference
Doc Methods

exportAsXFDF
5.0 ®| @

Exports form fields an XFDF file to the local hard drive. XFDF is an XML representation of
Acrobat form data. See the Acrobat CD Documentation “Forms System Implementation
Notes” for details.

NoOTE: (Security@): If the cPath parameter is specified, then this method can only be
executed during batch, console or menu events. See the Event Object for a
discussion of Acrobat JavaScript events.

Parameters

bAllFields (optional) If true, all fields are exported, including those that have
no value. Iffalse (the default), excludes those fields that currently
have no value.

bNoPassword (optional) If true (the default), do not include text fields that have
the "password" flag set in the exported XFDF.

aFields (optional) The array of field names to submit or a string containing a
single field name.
e If specified, only these fields are exported, except those excluded
by bNoPassword
e If aFieldsis an empty array, no fields are exported. The XFDF
might still contain data, depending on the bAnnotations
parameter.
e If this parameter is omitted or is null, all fields in the form are
exported, except those excluded by bNoPassword
Specify non-terminal field names to export an entire subtree of
fields; see the example below.

cPath (optional) A string specifying the device-independent pathname for
the file. (See Section 3.10.1 of the PDF Reference for a description of
the device-independent pathname format.) The pathname may be
relative to the location of the current document. If the parameter is
omitted a dialog is shown to let the user select the file.

NoOTE: (Security@): The parameter cPath is required to have a Safe
Path and have a . xfdf extension. This method will throw a
NotAllowedError (see the Error Objects) exception if
these security conditions are not met, and the method will
fail.

bAnnotations (optional, version 6.0) If true, annotations are included in the
exported XFDF. The defaultis false

150 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Doc Methods

Returns

Nothing

exportDataObject
5.0 S

This method extracts the specified data object to an external file. See also dataObjects,
createDataObject, getDataObject, importDataObject,
removeDataObject, and the Data Object.

NOTEs: (Security@): Beginning with Acrobat 6.0, if the parameter cDIPathis non-NULL a
NotAllowedError (see the Error Objects) exception will be thrown and the
method will fail.

If cDIPathis not passed to this method, a file selection dialog will open to allow the
user to select a save path for the embedded data object.

Parameters
cName The name of the data object to extract.
cDIPath (optional) A device-independent path to which to extract the data

object. This path may be absolute or relative to the current document.
If not specified, the user is prompted to specify a save location. See
“File Specification Strings” in the PDF Reference Manual for the exact
syntax of the path.

NoTe: (version 6.0) The use of this parameter is no longer supported
and should not be used. See the security notes above.

bAllowAuth (optional, version 6.0) If true, a dialog is used to obtain user
authorization. Authorization may be required if the data object was
encrypted using Doc . encryptForRecipients. Authorization dialogs
are allowed if bAl1lowAuth is true. The default value is false.

Acrobat JavaScript Scripting Reference 151

- Acrobat JavaScript Scripting Reference
Doc Methods

nLaunch (optional, version 6.0) nLaunch controls whether the file is launched,
or opened, after it is saved. Launching may involve opening an
external application if the file is not a PDF file. The values of nLaunch
are

e If the value is 0, the file will not be launched after it is saved.

e If the value is 1, the file will be saved and then launched.
Launching will prompt the user with a security alert warning if the
file is not a PDF file. The user will be prompted for a save path.

e If the value is 2, the file will be saved and then launched.
Launching will prompt the user with a security alert warning if the
file is not a PDF file. A temporary path is used, and the user will not
be prompted for a save path. The temporary file that is created will
be deleted by Acrobat upon application shutdown.

The default value is 0.

Returns

Nothing

Example 1
Prompt the user for a file and location to extract to.

this.exportDataObject ("MyData") ;

Example 2 (Version 6.0)
Extract PDF document and launch it in the viewer.

this.exportDataObject ({ cName: "MyPDF", nLaunch: 2 });

exportXFAData
6.0 ®| @

Exports an XFA data file to the local hard drive.

Form Rights (@): When exporting XFA data from the Adobe Reader, the document must
have export form rights.

Note: (Security ®): If the cPath parameter is specified, then this method can only be
executed during batch, console or menu events. See the Event Object for a
discussion of Acrobat JavaScript events.

152 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
Doc Methods

Parameters

cPath (optional) A device-independent pathname for the file. The pathname
may be relative to the document. See “File Specification Strings” in the
PDF Reference Manual for the exact syntax of the path. If this
parameter is omitted, a dialog is shown to let the user select the file.

NoOTE: (Security@): The parameter cPath is required to have a Safe
Path. Additionally, the file name must have a .xdp extension, if
bXDP is true, or a.xml extension, if bXDP is false. This
method will throw a NotAllowedError (see the Error
Objects) exception if these security conditions are not met, and
the method will fail.

bXDP (optional) If true (the default), the method exports in the XDP
format. Otherwise, it exports in the plain XML data format.

aPackets (optional) An array of strings specifying which packets to include in
the XDP export. This parameter is only applicable if bXDP is true.

Possible strings are:

template
datasets
stylesheet
xfdf
sourceSet
pdf

config

*

pd£f means that the PDF should be embedded. If pd£ is not specified,

only a link to the PDFis included in the XDP.

xfd£ means include annotations in the XDP (since that packet uses
XFDF format).

* means that all packets should be included in the XDP.

The default for this parameter is: ["datasets", "xfdf"].
Note: (Save rights required O): When exporting a document with

from the Adobe Reader with aPackets set to pdf (or *, which
implies pd£), the document must have document save rights.

Returns

Nothing

extractPages

50 OO | D

Creates a new document consisting of pages extracted from the current document. If a
page range is not specified, extracts all pages in the document.

Acrobat JavaScript Scripting Reference 153

- Acrobat JavaScript Scripting Reference
Doc Methods

See also deletePages, insertPages, and replacePages.

NOTE: (Security@) If the cPath parameter is specified, then this method can only
be executed during batch, console or menu events, or through an external call
(for example, OLE). See the Event Object for a discussion of Acrobat JavaScript
events.

Parameters

nStart (optional) A 0-based index that defines the start of the range of pages
to extract from the source document. If only nStart is specified then
the range of pages is the single page specified by nStart.

nEnd (optional) A 0-based index that defines the end of the range of pages
to extract from the source document. If only nEnd is specified then
the range of pages is 0 to nEnd.

cPath (optional) The device-independent pathname to which to save the
new document. See 3.10.1 of the PDF Reference for a description of
the device-independent path name format. The path name may be
relative to the location of the current document.

NOTE: (Security@): The parameter cPath is required to have a Safe
Path and have a . pdf extension. This method will throw a
NotAllowedError (see the Error Objects) exception if these
security conditions are not met, and the method will fail.

Returns

If cPathis not specified, returns the Doc Object for the new document; otherwise, returns
the null object.

Example

The following batch sequence would take each of the selected files and extract each page
and save the page to a folder with an unique name. This example may be useful in the
following setting. Clients one-page bills are produced by an application and placed in a
single PDF file. It is desired to separate the pages for distribution and/or separate printing
jobs.

/* Extract Pages to Folder */
// regular expression acquire the base name of file
var re = /.*\/|\.pdf$/ig;

// filename is the base name of the file Acrobat is working on
var filename = this.path.replace(re,"");

try {
for (var i = 0; i < this.numPages; i++)
this.extractPages (

{

154 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
Doc Methods
nStart: i,

cPath: "/F/temp/"+filename+" " + 1 +".pdf"

1
} catch (e) {
console.println("Aborted: " + e)
}

flattenPages
50 | © (X)

Converts all annotations in the specified page range to page contents. If a page range is not
specified, converts annotation for all the pages in the current document.

NoTe: Great care must be used when using this method. All annotations—including form
fields, comments and links—on the specified range of pages are flattened; they may
have appearances, but they will no longer be annotations.

Parameters
nStart (optional) A 0-based index that defines the start of an inclusive range
of pages in the current document. If only nStart is specified, then
the page range is the single page specified by nStart.
nEnd (optional) A 0-based index that defines the end of an inclusive range
of pages in the current document.
nNonPrint (optional, version 6.0) This parameter determines how to handle non
printing annotations. Values are
0 (default): Non-printing annotations are flattened.
1: Non-printing annotations are left as is.
2: Non-printing annotations are removed from the document.
Returns
Nothing
Example

Flatten all pages in the document.

this.flattenPages() ;

getAnnot
5.0 (ARNKX)

Gets the name of an annot object contained on a specific document page.

Acrobat JavaScript Scripting Reference 155

- Acrobat JavaScript Scripting Reference
Doc Methods

Parameters
nPage The page that contains the desired Annot Object.
cName The name of the desired Annot Object.

Returns

The Annot Object, or null if there is no such annotation.

Example
var ann = this.getAnnot (0, "OnMarketShare") ;
if (ann == null)
console.println("Not Found!")
else
console.println("Found it! type: " + ann.type);
getAnnots

5.0 (AR X)

Gets an array of Annot Objects satisfying specified criteria. See also getAnnot and
syncAnnotScan.

Parameters

nPage (optional) A 0-based page number. If specified, gets only annotations
on the given page. If not specified, gets annotations that meet the
search criteria from all pages.

nSortBy A sort method applied to the array. Values are:
ANSB None: (default) Do not sort; equivalent to not specifiying
this parameter.
ANSB Page: Use the page number as the primary sort criteria.
ANSB Author: Use the author as the primary sort criteria.
ANSB ModDate: Use the modification date as the primary sort
Criteria.
ANSB Type: Use the annot type as the primary sort criteria.

bReverse (optional) If true, causes the array to be reverse sorted with respect
tonSortBy.

156 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
Doc Methods

nFilterBy Gets only annotations satisfying certain criteria. Values are:
ANFB ShouldNone: (default) Get all annotations. Equivalent of
not specifying this parameter.
ANFB ShouldPrint: Only include annotations that can be
printed.
ANFB ShouldView: Only include annotations that can be
viewed.
ANFB ShouldEdit: Only include annotations that can be
edited.
ANFB ShouldAppearInPanel: Only annotations that appear
in the annotations pane.
ANFB ShouldSummarize:Only include annotations that can be
included in a summarization
ANFB ShouldExport: Only include annotations that can be
included in an export

Returns

An array of Annot Objects.

Example

this.syncAnnotScan() ;

var annots = this.getAnnots ({
nPage:0,
nSortBy: ANSB Author,
bReverse: true

13K

console.show() ;

console.println ("Number of Annots: " + annots.length);
var msg = "%s in a %s annot said: \"%s\"";

for (var i = 0; i < annots.length; i++)
console.println(util.printf (msg, annots([i].author, annots[i].type,
annots[i] .contents)) ;

getDataObject

5.0

Obtains a specific data object. See also dataObjects, createDataObject,
exportDataObject, getDataObject, importDataObject,
removeDataObject.

Acrobat JavaScript Scripting Reference 157

- Acrobat JavaScript Scripting Reference
Doc Methods

Parameters

cName The name of the data object to obtain.

Returns
The Data Object corresponding to the specified name.

Example

var d = this.getDataObject ("MyData") ;
console.show(); console.clear () ;
for (var 1 in d) console.println("MyData." + 1 + "=" + d[i]);

getField

Maps a Field Object in the PDF document to a JavaScript variable.

Beginning with Acrobat 6.0, this method can return the Field Object of an individual
Widget. For more information, see Field Access from JavaScript.

Parameters

cName The name of the field of interest.

Returns
A Field Object representing a form field in the PDF document.
Example 1

Make a text field multiline and triple its height
var £ = this.getField("myText") ;

var aRect = f.rect; // get bounding rectangle
f.multiline = true; // make it multiline
var height = aRect[1l]-aRect[3];// calculate height
aRect [3] -= 2* height; // triple the height of the text field
f.rect = aRect; // and make it so
Example 2

Attach a JavaScript action to an individual widget, in this case, a Radio Button.

var f = this.getField("myRadio.0O");
f.setAction ("MouseUp",
"app.alert (' Thanks for selecting the first choice.');");

158 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Doc Methods

geticon

5.0

Obtains a specific 1con object. See also icons, addIcon, importIcon, and

removelcon, and £ield methods buttonGetIcon, buttonImportIcon, and
buttonSetIcon.

Parameters

cName The name of the icon obejct to obtain.

Returns

An Icon Generic Object associated with the specified name in the document or null if no
icon of that name exists.

Example

The following is a custom keystroke script from a combobox. The face names of the items in
the combobox are the names of some of the icons that populate the document. As the user

chooses different items from the combobox, the corresponding icon appears as the button
face of the field "myPictures".

if (levent.willCommit) {
var b = this.getField("myPictures") ;
var i = this.getIcon (event.change) ;
b.buttonSetIcon (i) ;

}

See field.buttonSetIcon for a more elaborate variation on this example.

getLegalWarnings
60 | ® IX)

This method returns the legal warnings for this document in the form of an object with
entries for each warning that has been found in the document. Legal warnings can be
embedded in a file at the time that a file is signed by an author signature. Legal warnings
can be embedded using the cLegalAttest of the £ield.signatureSign method.

The process that analyses a file to determine this list of warnings not available in the Adobe
Reader. The value of each entry is the number of occurances of this warning in the
document. Refer to PDF Reference 1.5.

Acrobat JavaScript Scripting Reference

159

- Acrobat JavaScript Scripting Reference
Doc Methods

Parameters
bExecute If true, will cause the file to be examined and all detected warnings
will be returned. If £alse, the default value, the warnings that have
been embedded in the file will be returned.
Returns

A object containing property names and values of legal warnings

Example
Process a document and get legal PDF warnings.

var w = this.getLegalWarnings(true);
console.println("Actual Legal PDF Warnings:");
for(i in w) console.println(i + " = " + w[i]);

var wl = this.getLegalWarnings(false);
console.println("Declared Legal PDF Warnings:");

for(i in wl) console.println(i + " = " + wl[i]);

// For an author signature, note also if annotations are
// allowed by MDP settings

var £ = this.getField("AuthorSig") ;

var s = f.signatureInfo();

if (s.mdp == "defaultAndComments")
console.println("Annotations are allowed");

// What does author have to say about all this?

console.println("Legal PDF Attestation:");
console.println(wl.Attestation);

getLinks
6.0 (X

Gets an array of 1ink objects that reside on a specified page at specified coordinates. See
also addLink, removeLinks and the Link Object,

Parameters
nPage The page that contains the desired 1ink object. The first page is 0.
oCoords An array of four numbers in rotated user space, the coordinates of a

rectangle listed in the following order: upper-left x, upper-left y,
lower-right x and lower-right y.

160 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

Doc Methods
Returns

An array of Link Objects.
Example

Count the number of links in a document and report to the console.
var numLinks=0;

for (var p = 0; p < this.numPages; p++)
{

var b =

this.getPageBox ("Crop", p);
var 1 =

this.getLinks (p, b);

console.println ("Number of Links on page " + p +" is " + 1l.length);
numLinks += 1.length;

}
console.println ("Number of Links in Document is " + numLinks) ;
getNthFieldName
40
Gets the nth field name in the document. See also numFields.
Parameters
nIndex The field name to obtain.
Returns
The name of the field in the document.
Example
Enumerate through all of the fields in the document.
for (var 1 = 0; 1 < this.numFields; i++)
console.println("Field[" + i + "] = " + this.getNthFieldName (i)) ;
getNthTemplate

® 0

Gets the name of the nth template within the document.

This method is superseded by the templates property, the getTemplate method, and
the Template Object in later versions.

Acrobat JavaScript Scripting Reference

161

162

Acrobat JavaScript Scripting Reference

Doc Methods

Parameters

nIndex The template to obtain.

Return

S

The name of the specified template.

getOCGs

6.0

Gets an array of OCG Objects found on a specified page.

Parameters

Return

Examp

nPage (optional) The 0-based page number. If not specified, all the OCGs
found in the document are returned.

S

Returns an array of OCG Objects or null if no OCGs are present.

le

Turn on all the OCGs on the given document and page.

function TurnOnOCGsForPage (doc, nPage)
{
var ocgArray = doc.getOCGs (nPage) ;
for (var 1=0; i < ocgArry.length; i++)
ocgArray [i] .state = true;

getPageBox

5.0

Gets a rectangle in rotated user space that encompasses the named box for the page. See
also setPageBoxes.

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Doc Methods

Parameters

cBox (optional) The type of box. Values are:

Art
Bleed
BBox
Crop (default)
Trim
For definitions of these boxes see “Page Boundaries” in the PDF Reference.

nPage (optional) The 0-based index of the page. Default is 0, the first page in the
document.

Returns

A rectangle in rotated user space that encompasses the named box for the page.

Example
Get the dimensions of the Media box.

var aRect this.getPageBox ("Media") ;

var width = aRect[2] - aRect[0];

var height = aRect[1l] - aRect[3];

console.println("Page 1 has a width of " + width + " and a height of " +
height) ;

getPagelabel

5.0

Gets page label information for the specified page.

Parameters

nPage (optional) The 0-based index of the page. Default is 0, the first page in the
document.

Returns

Page label information for the specified page.

Example

See setPageLabels for an example.

Acrobat JavaScript Scripting Reference 163

- Acrobat JavaScript Scripting Reference
Doc Methods

getPageNthWord
5.0 ®©
Gets the nth word on the page. See also getPageNumWords and
selectPageNthWord.

NoTe: (Security ®): This method throws an exception if the document security is set to
prevent content extraction.

Parameters
nPage (optional) The 0-based index of the page. Default is 0, the first page in
the document.
nwWord (optional) The 0-based index of the word. Default is 0, the first word on
the page.
bStrip (optional) Whether punctuation and whitespace should be removed
from the word before returning. Default is true.
Returns

The nth word on the page.

Example
See Example 2 of spell.checkWord for an example.

getPageNthWordQuads
5.0 S

Gets the quads list for the nth word on the page. The quads can be used for constructing
text markup annotations, Underline, StrikeOut, Highlight and Squiggly. See
also getPageNthWord, getPageNumWords, and selectPageNthWord.

NoOTE: (Security@): This method throws an exception if the document security is set to
prevent content extraction.

Parameters
nPage (optional) The 0-based index of the page. Default is 0, the first page in
the document.
nWord (optional) The 0-based index of the word. Default is 0, the first word on

the page.

164 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Doc Methods

Returns

The quads list for the nth word on the page.
Example

The following example underlines the fifth word on the second page of a document.

var annot = this.addAnnot ({
page: 1,
type: "Underline",
quads: this.getPageNthWordQuads (1, 4),
author: "A. C. Acrobat",
contentg: "Fifth word on second page"

I3,

See spell.checkWord for an additional example.

getPageNumWords

5.0

Gets the number of words on the page. See also getPageNthWord,
getPageNthWordQuads, and selectPageNthWord.

Parameters

nPage (optional) The 0-based index of the page. Default is O, the first page in the
document.

Returns

The number of words on the page.

Example

// count the number of words in a document
var cnt=0;
for (var p = 0; p < this.numPages; p++)
cnt += getPageNumWords (p) ;
console.println("There are " + cnt + " words in this doc.");

See Example 2 of spell.checkWord for an additional example.

getPageRotation

5.0

Gets the rotation of the specified page. See also setPageRotations.

Acrobat JavaScript Scripting Reference 165

- Acrobat JavaScript Scripting Reference
Doc Methods

Parameters

nPage (optional) The 0-based index of the page. Default is 0, the first page in the
document.

Returns

The rotation value of 0, 90, 180, or 270.

getPageTransition

5.0

Gets the transition of the specified page. See also setPageTransitions.

Parameters

nPage (optional) The 0-based index of the page. Default is 0, the first page in
the document.

Returns
An array of three values: [nDuration, cTransition nTransDuration].

e nDurationis the maximum amount of time the page is displayed before the viewer
automatically turns to the next page. A duration of -1 indicates that there is no
automatic page turning.

e cTransitionisthe name of the transition to apply to the page. See the application
property transitions for a list of valid transitions.

e cTransDurationis the duration (in seconds) of the transition effect.

getPrintParams

6.0

Gets a printParams object that reflects the default print settings. See print, which
now takes the printParams object as its parameter.

Parameters

None
Returns

A printParams Object.
Example

Get the printParams object of the default printer.

166

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Doc Methods

var pp = this.getPrintParams () ;
pp.colorOverride = pp.colorOverrides.mono; // set some properties
this.print (pp); // print

getSound

5.0

Gets the sound object corresponding to the specified name. See also sounds,
importSound, deleteSound, and the Sound Object.

Parameters

cName The name of the object to obtain.

Returns
The Sound Object corresponding to the specified name.

Example

var s = this.getSound ("Moo") ;
console.println("Playing the " + s.name + " sound.");

s.play() ;
getTemplate
5.0
Gets the named template from the document. See also templates, createTemplate,
removeTemplate, and the Template Object.
Parameters
cName The name of the template to retrieve.
Returns
The Template Object or null if the named template does not exist in the document.
Example
var t = this.getTemplate ("myTemplate") ;
if (t != null) console.println("myTemplate exists and is "
+ eval('(t.hidden) ? "hidden" : "visible"') + ".");

else console.println("myTemplate is not present!");

Acrobat JavaScript Scripting Reference 167

- Acrobat JavaScript Scripting Reference
Doc Methods

getURL
40 | ©O| G

Gets the specified URL over the internet using a GET. If the current document is being
viewed inside the browser, or Acrobat Web Capture is not available, the method uses the
Weblink plug-in to retrieve the requested URL. If running inside Acrobat, the method gets
the URL of the current document either from the baseURL, from the URL of the first page
(page 0) if the document was WebCaptured, or from the file system.

Note: This method roughly corresponds to the “open a web page” action.

Parameters

cURL A fully qualified URL or a relative URL. There can be a query string at the
end of the URL.

bAppend (optional) If true (the default), the resulting page or pages should be
appended to the current document. This flag is considered to be false
if the document is running inside the web browser, the Acrobat Web
Capture plug-in is not available, or if the URL is of type "file: ///"

NoTe: (Security ®): Beginning with Acrobat 6.0, if bAppend is true, the
getURL method can only be executed during a console, menu or
batch event.

Returns

Nothing

Example
this.getURL ("http://www.adobe.com/", false);

gotoNamedDest

Goes to a named destination within the PDF document. For details on named destinations
and how to create them, see page 387 of the PDF Reference.

Parameters

cName The name of the destination within a document.

Returns

Nothing

Example

The following example opens a document then goes to a named destination within that
document.

168 Acrobat JavaScript Scripting Reference

http://partners.adobe.com/asn/developer/acrosdk/DOCS/pdfspec.pdf
http://partners.adobe.com/asn/developer/acrosdk/DOCS/pdfspec.pdf
http://www.adobe.com/supportservice/devrelations/PDFS/TN/PDFSPEC.PDF
http://partners.adobe.com/asn/developer/acrosdk/DOCS/pdfspec.pdf
http://partners.adobe.com/asn/developer/acrosdk/DOCS/pdfspec.pdf
http://partners.adobe.com/asn/developer/acrosdk/DOCS/pdfspec.pdf
http://partners.adobe.com/asn/developer/acrosdk/DOCS/pdfspec.pdf
http://partners.adobe.com/asn/developer/acrosdk/DOCS/pdfspec.pdf
http://partners.adobe.com/asn/developer/acrosdk/DOCS/pdfspec.pdf

Acrobat JavaScript Scripting Reference
Doc Methods

// open new document

var myNovelDoc = app.openDoc ("/c/fiction/myNovel.pdf") ;
// go to destination in this new doc

myNovelDoc .gotoNamedDest ("chapter5") ;

// close old document

this.closeDoc () ;

importAnFDF
40 | © Q

Imports the specified FDF file. See also importAnXFDF and importTextData.

Parameters
cPath (optional) The device-independent pathname to the FDF file. See

Section 3.10.1 of the PDF Reference for a description of the device-
independent pathname format. It should look like the value of the /F
key in an FDF exported with the submi tForm method or with the
Advanced >Forms>Export Form Data menu item. The pathname may
be relative to the location of the current document. If this parameter is
omitted, a dialog is shown to let the user select the file.

Returns

Nothing
Example

The following code, which is an action of a Page Open event, checks whether a certain
function, ProcResponse, is already defined, if not, it installs a document level JavaScript,
which resides in an FDF file.

if (typeof ProcResponse == "undefined") this.importAnFDF ("myDLJS.fdf") ;

Here, the pathname is a relative one. This technique may be useful for automatically
installing document level JavaScripts for PDF files distilled from a PostScript file.

importAnXFDF
50 | © Q

Imports the specified XFDF file containing XML form data. See also importAnFDF and
importTextData. For a description of XFDF, see “Forms System Implementation Notes”
in the Acrobat CD Documentation.

Acrobat JavaScript Scripting Reference 169

- Acrobat JavaScript Scripting Reference
Doc Methods

Parameters
cPath (optional) The device-independent pathname to the XFDF file. See Section

3.10.1 of the PDF Reference for a description of the device-independent
pathname format. The pathname may be relative to the location of the
current document. If the parameter is omitted, a dialog is shown to let the
user select the file.

Returns

Nothing
importDataObject

50 OO | @

Imports an external file into the document and associates the specified name with the
data object. Data objects can later be extracted or manipulated. See also Data Object,
dataObjects, createDataObject, exportDataObject, getDataObject,
importDataObject and removeDataObject.

NOTE: (Security@): If the cDIPath parameter is specified, then this method can
only be executed during batch, console or menu events, or through an
external call (for example, OLE). See the Event Object for a discussion of Acrobat
JavaScript events.

Parameters
cName The name to associate with the data object.
cDIPath (optional) A device-independent path to a data file on the user’s hard

drive. This path may be absolute or relative to the current document.
If not specified, the user is prompted to locate a data file. See File
Specification Strings in the PDF Reference Manual for the exact syntax
of the path.

cCryptFilter (optional, version 6.0) The language independent name of a crypt
filter to use when encrypting this data object. This crypt filter must
have previously been added to the document’s list of crypt filters,
using the Document Object addRecipientListCryptFilter
method, otherwise an exception will be thrown. The predefined
"Identity" crypt filter can be used if it is desired that this data
object not be encrypted in a file that is otherwise encrypted by the
Document Object encryptForRecipients method.

Returns

true on success. An exception is thrown on failure.

170 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

Doc Methods
Example
function DumpDataObjectInfo (dataocbj)
{
for (var i in dataobj)
console.println(dataobj.name + "[" + 1 + "]=" + dataobj[i]);

}

// Prompt the user for a data file to embed.
this.importDataObject ("MyData") ;

DumpDataObjectInfo (this.getDatalObject ("MyData")) ;

// Embed Foo.xml (found in parent director for this doc).
this.importDataObject ("MyData2", "../Foo.xml") ;
DumpDataObjectInfo (this.getDataObject ("MyData2")) ;

importicon

50 OO | O

Imports an icon into the document and associates it with the specified name. See also
icons, addIcon, getIcon, removeIcon, £ield methods buttonGetIcon,
buttonImportIcon, buttonSetIcon, and the lcon Generic Object.

Beginning with version 6.0, Acrobat will first attempt to open cDIPathas a PDF. On failure,
Acrobat will try to convert cDIPath to PDF from one of the known graphics formats (BMP,
GIF, JPEG, PCX, PNG, TIFF) and then import the converted file as a button icon.

NOTE: (Security@): If cDIPathis specified, this method can only be executed during
batch, console or menu events. See the Event Object for a discussion of Acrobat
JavaScript events.

Parameters

cName The name to associate with the icon.

cDIPath (optional) A device-independent path to a PDF file on the user’s hard
drive. This path may be absolute or relative to the current document.
cDIPath may only be specified in a batch environment or from the
console. See Section 3.10.1, “File Specification Strings” in the PDF
Reference for the exact syntax of the path. If not specified, the nPage
parameter is ignored and the user is prompted to locate a PDF file and
browse to a particular page.

nPage (optional) The 0-based index of the page in the PDF file to import as
an icon. Default is 0.

Acrobat JavaScript Scripting Reference 171

- Acrobat JavaScript Scripting Reference
Doc Methods

Returns
An integer code indicating whether it was successful or not:

0: No error

1: The user cancelled the dialog

-1: The selected file could not be opened
-2: The selected page was invalid

Example

This function is useful to populate a document with a series of named icons for later
retrieval. For example, if a user of a document selects a particular state in a listbox, the
author may want the picture of the state to appear next to the listbox. In prior versions of
the application, this could be done using a number of fields that could be hidden and
shown. This is difficult to author, however; instead, the appropriate script might be
something like this:

var £ = this.getField("StateListBox") ;
var b = this.getField("StateButton") ;
b.buttonSetIcon(this.getIcon(f.value)) ;

This uses a single field to perform the same effect.

A simple user interface can be constructed to add named icons to a document. Assume the
existence of two fields: a field called IconName which will contain the icon name and a
field called IconAdd which will add the icon to the document. The mouse up script for
IconAdd would be:

var t = this.getField("IconName") ;
this.importIcon (t.value) ;

The same kind of script can be applied in a batch setting to populate a document with
every selected icon file in a folder.

importSound

50 O ®| O

Imports a sound into the document and associates the specified name with the sound.

NoTE: (Security@): If cDIPathis specified, this method can only be executed during
batch, console, or menu events. See the Event Object for a discussion of Acrobat
JavaScript events.

Parameters

cName The name to associate with the sound object.

172 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
Doc Methods

cDIPath (optional) A device-independent path to a sound file on the user’s
hard drive. This path may be absolute or relative to the current
document. If not specified, the user is prompted to locate a sound file.
See Section 3.10.1, “File Specification Strings’, in the PDF Reference for
the exact syntax of the path.

Returns

Nothing

Example

this.importSound ("Moo") ;

this.getSound ("Moo") .play () ;
this.importSound ("Moof", "./moof.wav") ;
this.getSound ("Moof") .play () ;

See also sounds, getSound, deleteSound, and the Sound Object.

importTextData

50 | © Q

Imports a row of data from a text file. Each row must be tab delimited. The entries in the first
row of the text file are the column names of the tab delimited data. These names are also
field names for text fields present in the PDF file. The data row numbers are 0-based; that is,
the first row of data is row zero (this does not include the column name row). When a row of
data is imported, each column datum becomes the field value of the field that corresponds
to the column to which the data belongs.

Parameters
cPath (optional) A relative device-independent path to the text file. If not
specified, the user is prompted to locate the text data file.
nRow (optional) The 0-based index of the row of the data to import, not
counting the header row. If not specified, the user is prompted to
select the row to import.
Returns
Nothing
Example 1

Suppose there are text fields named "First", "Middle" and "Last", and there is also a data file,
the first row of which consists of the three strings, First, Middle and Last, separated
by tabs. Suppose there are four additional rows of name data, again separated by tabs.

First Middle Last
Al Recount Gore

Acrobat JavaScript Scripting Reference 173

- Acrobat JavaScript Scripting Reference
Doc Methods

George Dubya Bush
Alan Cutrate Greenspan
Bill Outgoing Clinton

// Import the first row of data from "myData.txt".
this.importTextData ("/c/data/myData.txt", 0)

Example (continued)

The following code is a mouse up action for a button. Clicking on the button cycles through
the text file and populates the three fields "First", "Middle" and "Last" with the name data.

if (typeof cnt == "undefined") cnt = 0;
this.importTextData ("/c/data/textdata.txt", cnt++ % 4)

The same functionality can be obtained using the ADBC Object and associated properties
and methods. The data file can be a spreadsheet or a database.

importXFAData
60 ©®O|O| @

Imports the specified XFA file. See also importAnXFDF and importTextData.

NoOTE: (Security@): This method is only allowed in batch, console, and menu events.

Parameters
cPath (optional) The device-independent pathname to the XFA file. The

pathname may be relative to the location of the current document. If
this parameter is omitted a dialog is shown to let the user select the
file.

Returns

Nothing
insertPages

50 O ®©| QO

Inserts pages from the source document into the current document. If a page range is not
specified, gets all pages in the source document. See also deletePages and
replacePages.

NoTE: (Security@): This method can only be executed during batch, console, or menu
events. See the Event Object for a discussion of Acrobat JavaScript events.

174 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
Doc Methods

Parameters
nPage (optional) The 0-based index of the page after which to insert the
source document pages. Use -1 to insert pages before the first page of
the document.
cPath The device-independent pathname to the PDF file that will provide
the inserted pages. See Section 3.10.1 of the PDF Reference for a
description of the device-independent pathname format. The
pathname may be relative to the location of the current document.
nStart (optional) A 0-based index that defines the start of an inclusive range
of pages in the source document to insert. If only nStart is specified
then the range of pages is the single page specified by nStart.
nEnd (optional) A 0-based index that defines the end of an inclusive range
of pages in the source document to insert. If only nEnd is specified
then the range of pages is 0 to nEnd.
Returns
Nothing
Example

Insert a cover page to the current document.

this.insertPages

({

nPage: -1,
cPath: "/c/temp/myCoverPage.pdf",
nStart: 0

I3
mailDoc

4.0 (S)

Saves the current PDF document and mails it as an attachment to all recipients, with or
without user interaction. See also mailGetAddrs, mailMsg, mailFormand
report.mail.

Note: For Adobe 5.1 Reader and beyond, this method is commonly allowed, but
document Save rights are required in case the document is changed.

NoTte: On Windows, the client machine must have its default mail program configured to
be MAPI enabled in order to use this method.

Acrobat JavaScript Scripting Reference 175

- Acrobat JavaScript Scripting Reference
Doc Methods

Parameters
bul (optional) If true (the default), the rest of the parameters are used in
a compose-new-message window that is displayed to the user. If
false, the cTo parameter is required and all others are optional.
cTo (optional) The semicolon-delimited list of recipients for the message.
cCc (optional) The semicolon-delimited list of CC recipents for the
message.
cBcc (optional) The semicolon-delimited list of BCC recipents for the
message.
cSubject (optional) The subject of the message. The length limit is 64k bytes.
cMsg (optional) The content of the message. The length limit is 64k bytes.
Returns
Nothing
Example

This pops up the compose-new-message window.
this.mailDoc (true) ;
This sends out mail with the attached PDF file to funl@fun.comand fun2@fun.com

this.mailDoc (false, "funl@fun.com", "fun2e@fun.com", "",
"This is the subject", "This is the body.") ;

mailForm

4.0 (F)

Exports the form data and mails the resulting FDF file as an attachment to all recipients,
with or without user interaction. The method does not support signed signature fields. See
alsomailGetAddrs, mailMsg, mailDoc and report.mail.

NoTe: On Windows, the client machine must have its default mail program configured to
be MAPI enabled in order to use this method.

Parameters

bul (optional) If true (the default), the rest of the parameters are used in
a compose-new-message window that is displayed to the user. If
false, the cTo parameter is required and all others are optional.

176 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
Doc Methods

cTo (optional) A semicolon-delimited list of recipients for the message.
cCc (optional) A semicolon-delimited list of CC recipents for the message.
cBcc (optional) A semicolon-delimited list of BCC recipents for the
message.
cSubject (optional) The subject of the message. The length limit is 64k bytes.
cMsg (optional) The content of the message. The length limit is 64k bytes.
Returns
Nothing
Example

This pops up the compose new message window.
this.mailForm(true) ;

This sends out the mail with the attached FDF file to funl@fun.comand
fun2@fun.com

this.mailForm(false, "funle@fun.com; fun2efun.com", "", "V,
"This is the subject", "This is the body of the mail.");

movePage

50 | © (X

Moves a page within the document.

Parameters
nPage (optional) The 0-based index of the page to move. Default is 0.
nAfter (optional) The 0-based index of the page after which to move the
specified page. Use -1 to move the page before the first page of the
document. Default is the last page in the document.
Returns
Nothing
Example

Reverse the pages in the document.

for (i = this.numPages - 1; i >= 0; i--) this.movePage (i) ;

Acrobat JavaScript Scripting Reference 177

- Acrobat JavaScript Scripting Reference
Doc Methods

newPage

0 |©®Q

Adds a new page to the active document in the Acrobat Viewer. .

NoTE: (Security@)z This method can only be executed during batch, console or menu

events.
Parameters
nPage (optional) The page after which to add the new page in a 1-based
page numbering system. The default is the last page of the document.
Use 0 to add a page before the first page. An invalid page range is
truncated to the valid range of pages.
nWidth (optional) The width of the page in points. The default value is 612.
nHeight (optional) The height of the page in points. The default value is 792.
Returns
Nothing
Example

Add a new page to match the page size of the doc.

var Rect = this.getPageBox ("Crop") ;
this.newPage (0, Rect[2], Rect[1]);

print

®

Prints all or a specific number of pages of the document.

Beginning wtih Acrobat 6.0, the method can print the document using the settings
contained in a printParams Object, rather than through the other parameters. The
permanent print settings are not altered.

NoTEs: (Security ®, version 6.0) When printing to a file, the path must be a Safe Path. The
print method will not overwrite an existing file

On a Windows platform, the file name must include an extension of .ps or .prn
(case insensitive). Additionally, the print method will not create afile directly in the
root directory, the windows directory, or the windows system directory.

An InvalidArgsError (see the Error Objects) exception will be thrown and
print wiill fail if any of the above security restrictions are not met.

178 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
Doc Methods

Parameters
bul (optional) If true (the default), will cause a Ul to be presented to
the user to obtain printing information and confirm the action.
nStart (optional) A 0-based index that defines the start of an inclusive
range of pages. If nStart and nEnd are not specified, prints all
pages in the document. If only nStart is specified then the
range of pages is the single page specified by nStart.
If nStart and nEnd parameters are used, bUI must be false.
nEnd (optional) A 0-based index that defines the end of an inclusive
range of page. If nStart and nEnd are not specified, prints all
pages in the document. If only nEnd is specified then the range of
a pages is 0 to nEnd.
If nStart and nEnd parameters are used, bUI must be false.
bSilent (optional) If true, suppresses the cancel dialog box while the
document is printing. The default is false
bShrinkToFit (optional, version 5.0) If true, the page is shrunk (if necessary) to
fit within the imageable area of the printed page. If false, itis
not. The defaultis false.
bPrintAsImage (optional, version 5.0) If true, print pages as an image. The
defaultis false.
bReverse (optional, version 5.0) If true, print from nEnd to nStart. The
defaultis false.
bAnnotations (optional, version 5.0) If true (the default), annotations are
printed.
printParams (optional, version 6.0) The printParams Object containing the
settings to use for printing. If this parameter is passed, any other
parameters are ignored.
Returns
Nothing
Example 1

This example prints current page the document is on.

this.print (false, this.pageNum, this.pageNum) ;
// print a file silently
this.print ({bUI: false, bSilent: true, bShrinkToFit: true});

Example 2 (Version 6.0)

var pp = this.getPrintParams () ;

pp.interactive

Acrobat JavaScript Scripting Reference

pp.constants.interactionlLevel .automatic;

179

- Acrobat JavaScript Scripting Reference
Doc Methods

pp.printerName = "hp officejet d series";
this.print (pp) ;

Note: When printerName is an empty string and £ileName is nonempty the current
document is saved to disk as a PostScript file.

Example 3 (Version 6.0)
Save the current document as a PostScript file.

var pp = this.getPrintParams () ;
pp.fileName = "/c/temp/myDoc.ps";
pp.printerName = "";

this.print (pp) ;

removeDataObject

50 | © Q

Deletes the data object corresponding to the specified name from the document. See also
dataObjects, createDataObject, exportDataObject, getDataObject,
importDataObject, removeDataObject and the Data Object.

Parameters

cName The name of the data object to remove.

Returns

Nothing

Example
this.removeDataObject ("MyData") ;

removeField

50 | © Q

Removes the specified field from the document. If the field appears on more than one page
then all representations are removed.

Note: (@, version 6.0): Beginning with version 6.0, doc . removeField can now be used
from within Adobe Reader for documents with “Advanced Form Features”.

180 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
Doc Methods

Parameters

cName The field name to remove.

Returns

Nothing

Example
this.removeField ("myBadField") ;

removelcon

50 | © (X)

Removes the specified named icon from the document. See also icons, addIcon,
getIcon, and importIcon, the £ield methods buttonGetIcon,
buttonImportIcon, and buttonSetIcon, and the lcon Generic Object.

Parameters

cName The name of the icon to remove.

Returns

Nothing

Example
Remove all named icons from the document.

for (var i = 0; i < this.icons.length; i++)
this.removeIcon (this.icons[i] .name) ;

removelinks

60 | © (X

Removes all the links on the specified page within the specified coordinates, if the user has
permission to remove links from the document. See also addLink, getLinks and the
Link Object,

Acrobat JavaScript Scripting Reference 181

- Acrobat JavaScript Scripting Reference
Doc Methods

Parameters
nPage The 0-based index of the page from which to remove links.
oCoords An array of four numbers in rotated user space, the coordinates of a
rectangle listed in the following order: upper-left x, upper-left y,
lower-right x and lower-right y.
Returns
Nothing
Example

Remove all links from the document.

// remove all links from the document
for (var p = 0; p < this.numPages; p++)

{

var b = this.getPageBox ("Crop", p);
this.removelLinks (p, b);

}

Use getLinks to help count the number of links removed.

removeTemplate

50 OO | Q@

Removes the named template from the document. See also templates,
createTemplate, getTemplate, and the Template Object.

NOTE: (Security@): This method can only be executed during batch or console events. See
the Event Object for a discussion of Acrobat JavaScript events.

Parameters

cName The name of the template to remove.

Returns

Nothing

removeThumbnails

50 | © (X)

Deletes thumbnails for the specified pages in the document. See also addThumbnails.

182

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

Doc Methods
Parameters
nStart (optional) A 0-based index that defines the start of an inclusive range
of pages. If nStart and nEnd are not specified, operates on all pages
in the document. If only nStart is specified, the range of pages is
the single page specified by nStart.
nEnd (optional) A 0-based index that defines the end of an inclusive range
of pages. If nStart and nEnd are not specified, operates on all pages
in the document. If only nEnd is specified, the range of pagesis 0 to
nEnd
Returns
Nothing
removeWeblinks

50 | © (X)

Scans the specified pages looking for links with actions to go to a particular URL on the web
and deletes them. See also addWeblinks.

Note: This method only removes weblinks authored in the application using the Ul. Web
links that are executed via JavaScript (for example, using getURL) are not removed.

Parameters

nStart (optional) A 0-based index that defines the start of an inclusive range
of pages. If nStart and nEndare not specified, operates on all pages
in the document. If only nStart is specified, the range of pages is
the single page specified by nStart.

nEnd (optional) A 0-based index that defines the end of an inclusive range
of pages. If nStart and nEnd are not specified, operates on all pages
in the document. If only nEnd is specified, the range of a pages is 0 to
nEnd

Returns
The number of web links removed from the document.

var numWeblinks = this.removeWeblinks () ;
console.println ("There were " + numWeblinks +
" web links removed from the document.") ;

Acrobat JavaScript Scripting Reference 183

- Acrobat JavaScript Scripting Reference
Doc Methods

replacePages

50 [©]®] 0

Replaces pages in the current document with pages from the source document. See also
deletePages, extractPages, and insertPages.

NOTE: (Security@): This method can only be executed during batch, console, or menu
events. See the Event Object for a discussion of Acrobat JavaScript events.

Parameters
nPage (optional) The 0-based index of the page at which to start
replacement. Default is 0.
cPath The device-independent pathname to the PDF file that will provide
the replacement pages. See Section 3.10.1 of the PDF Reference for a
description of the device-independent pathname format. The
pathname may be relative to the location of the current document.
nStart (optional) A 0-based index that defines the start of an inclusive range
of pages in the source document to be used for replacement.
If nStart and nEnd are not specified, gets all pages in the source
document. If only nStart is specified, the range of pages is the
single page specified by nStart.
nEnd (optional) A 0-based index that defines the end of an inclusive range
of pages in the source document to be used for replacement .
If nStart and nEnd are not specified, gets all pages in the source
document. If only nEnd is specified, the range of pages is 0 to nEnd.
Returns
Nothing
resetForm

©

Resets the field values within a document.

Note: Resetting a field causes it to take on its default value, which in the case of text fields
is usually blank.

184 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

Doc Methods
Parameters
aFields (optional) An array specifying the fields to reset. If not present or

null, all fields in the form are reset. You can include non-terminal
fields in the array.

Returns

Nothing
Example

Use this as a simple shortcut for having a whole subtree reset. For example, if you pass
"name" as part of the fields array then name . first, name.last, and so on, are reset.

var fields = new Array(2);

fields[0] = "Pl.OrderForm.Description";
fields[1] = "Pl.OrderForm.Qty";
this.resetForm(fields) ;

saveAs

5.0 ®

Saves the file to the device-independent path specified by the required parameter, cPath.
The file is not saved in linearized format. Beginning with Acrobat 6.0, the document can be
converted to another file type (other than PDF) and saved as specified by the value of the
cConvID parameter.

NoTe: (Security ®): This method can only be executed during batch, console, or menu
events. See the Event Object for a discussion of Acrobat JavaScript events.

NoTe: (Adobe Reader @): This method is available in the Adobe Reader for documents
that have “Save rights”.

Acrobat JavaScript Scripting Reference 185

186

Acrobat JavaScript Scripting Reference

Doc Methods

Parameters

cPath The device-independent path in which to save the file.

NoTEe: (Security ®): The parameter cPath is required to have a Safe
Path and have an extension appropriate to the value of
cConv1ID. See the Values of cConvID and Valid Extensions
table below. This method will throw a NotAllowedError
(see the Error Objects) exception if these security conditions are
not met, and the method will fail.

cConvID (optional, version 6.0) A conversion ID string that specifies the
conversion file type. Currently supported values for cConvID are
listed by the app . fromPDFConverters. If cConvIDis not

specified, then PDF is assumed.

Return

Values

s
Nothing

of cConvID and Valid Extensions

cConvID

Valid Extensions

com.adobe.acrobat.eps
com.adobe.acrobat.html-3-20
com.adobe.acrobat.html-4-01-css-1-00
com.adobe.acrobat.jpeg
com.adobe.acrobat.jp2k
com.adobe.acrobat.doc
com.adobe.acrobat.png
com.adobe.acrobat.ps
com.adobe.acrobat.rtf
com.adobe.acrobat.accesstext
com.adobe.acrobat.plain-text
com.adobe.acrobat.tiff
com.adobe.acrobat.xml-1-00

com.adobe.acrobat.xdp

eps
html, htm

html, htm

jpeg ,Jjpg, jpe

jpf, Jpx, jp2,32k, j2¢, jpc
doc

png

ps

rft

txt

txt

tiff, tif

xdp

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
Doc Methods

The following code could appear as a batch sequence. Assume there is a PDF file already
open containing form files that needs to be populated from a database and saved. Below is
an outline of the script:

Example 1

// code lines to read from a database and populate the form with data
// now save file to a folder; use customerID from database record

// as name

var row = statement.getRow () ;

this.saveAs ("/c/customer/invoices/" + row.customerID + ".pdf");

Example 2

You can use newDoc and addFieldto dynamically layout a form, then populate it from a
database and save.

var myDoc = app.newDoc ()

// layout some dynamic form fields

// connect to database, populate with data, perhaps from a database

// save the doc and/or print it; print it silently this time

// to default printer

myDoc . saveAs ("/c/customer/invoices/" + row.customerID + ".pdf");

myDoc . closeDoc (true) ; // close the doc, no notification

Example 3 (Version 6.0)
Save the current document in rich text format:
this.saveAs ("/c/myDocs/myDoc.rtf", "com.adobe.acrobat.rtf") ;

See fromPDFConverters for a listing of supported conversion ID strings.

scroll
Scrolls the specified point on the current page into middle of the current view. These
coordinates must be defined in rotated user space. See the PDF Reference for details on the
user space coordinate system.
Parameters
nX The x-coordinate for the point to scroll.
ny The y-coordinate for the point to scroll.
Returns
Nothing

Acrobat JavaScript Scripting Reference 187

http://www.adobe.com/supportservice/devrelations/PDFS/TN/PDFSPEC.PDF

- Acrobat JavaScript Scripting Reference
Doc Methods

selectPageNthWord

5.0

Changes the current page number and selects the specified word on the page. See also
getPageNthWord, getPageNthWordQuads and getPageNumWords.

Parameters
nPage (optional) The 0-based index of the page to operate on. Default is 0,
the first page in the document.
nwWord (optional) The 0-based index of the word to obtain. Default is 0, the
first word on the page.
bScroll (optional) Whether to scroll the selected word into the view if it is not
already viewable. Default is true.
Returns
Nothing
setAction

60 | ® o

Sets the JavaScript action of the document for a given trigger. See also addScript,
setPageAction, bookmark.setAction, and field.setAction

Parameters
cTrigger The name of the trigger point to which to attach the action. Values
are:
WillClose
WillSave
DidSave
WillPrint
DidPrint
cScript The JavaScript expression to be executed when the trigger is
activated.
Returns
Nothing
Example

This example insert WillSave and DidSave actions. The code gets the filesize before
saving and after saving, and compares the two.

188 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
Doc Methods
// WillSave Script

var myWillSave = 'var filesizeBeforeSave = this.filesize;\r'
+ 'console.println("File size before saving is "'
+ 'filesizeBeforeSave) ;';

// DidSave Script
var myDidSave = ‘'var filesizeAfterSave = this.filesize;\r'
+ 'console.println("File size after saving is "'
+ 'filesizeAfterSave) ;\r'
+ 'var difference = filesizeAfterSave - filesizeBeforeSave;\r'
+ 'console.println("The difference is " + difference);\r'
+ 'if (difference < 0)\r\t'
+ 'console.println("Reduced filesize!");\r'
+ 'else\r\t'
+ 'console.println("Increased filesize!") ;'

// Set Document Actions...

this.setAction ("WillSave", myWillSave) ;
this.setAction ("DidSave", myDidSave) ;

setPageAction

60 | ® o

Sets the action of a page in a document for a given trigger. See also setAction,
addScript, bookmark.setAction and field.setAction.

Parameters
nPage The 0-based index of the page in the document to which an action is
added.
cTrigger The trigger for the action. Values are:
Open
Close
cScript The JavaScript expression to be executed when the trigger is activated.
Returns
Nothing
Example

this.setPageAction (0, "Open", "app.beep(0);");

Acrobat JavaScript Scripting Reference 189

- Acrobat JavaScript Scripting Reference
Doc Methods

setPageBoxes

50 | © (X)

Sets a rectangle that encompasses the named box for the specified pages. See also

getPageBox.

Parameters

cBox

nStart

nEnd

rBox

(optional) The box type value, one of:

Art

Bleed

Crop

Media

Trim
Note that the BBox box type is read-only and only supported in
getPageBox. For definitions of these boxes see Section 8.6.1, “Page

Boundaries” in the PDF Reference.

(optional) A 0-based index that defines the start of an inclusive range
of pages in the document to be operated on. If nStart and nEndare
not specified, operates on all pages in the document. If only nStart
is specified, the range of pages is the single page specified by
nStart.

(optional) A 0-based index that defines the end of an inclusive range
of pages in the document to be operated on. If nStart and nEndare
not specified, operates on all pages in the document.

(optional) An array of four numbers in rotated user space to which to
set the specified box. If not provided, the specified box is removed.

Returns

Nothing

setPagelabels

50 | © (X)

Establishes the numbering scheme for the specified page and all pages following it until
the next page with an attached label is encountered. See also getPageLabel.

190

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Doc Methods

Parameters

nPage (optional) The 0-based index for the page to be labelled.

aLabel (optional) An array of three required items [cStyle, cPrefix,
nStart].

e cStyleis the style of page numbering. Can be:
D: decimal numbering
R or r: roman numbering, upper or lower case
A or a: alphabetic numbering, upper or lower case

See the PDF Reference, Section 7.3.1, for the exact definitions of
these styles.

e cPrefixis a string to prefix the numeric portion of the page
label.

e nStart s the ordinal with which to start numbering the pages.

If not supplied, any page numbering is removed for the specified
page and any others up to the next specified label.

The value of aL.abel cannot be null.

Returns

Nothing
Example 1

10 pages in the document, label the first 3 with small roman numerals, the next 5 with
numbers (starting at 1) and the last 2 with an "Appendix- prefix" and alphabetics.

this.setPagelabels (0, ["xr", "", 1]1);
this.setPagelabels (3, ["D", "", 1]);
this.setPagelabels (8, ["A", "Appendix-", 11]);
var s = this.getPagelabel (0) ;
for (var i = 1; i < this.numPages; i++)

s += ", " + this.getPageLabel (i) ;
console.println(s) ;

The example will produce the following output on the console:
i, ii, 4iii, 1, 2, 3, 4, 5, Appendix-A, Appendix-B
Example 2
Remove all page labels from a document.

for (var i = 0; i < this.numPages; i++) {
if (1 + 1 != this.getPagelabel (i)) {
// Page label does not match ordinal page number.
this.setPagelabels (i) ;

Acrobat JavaScript Scripting Reference 191

- Acrobat JavaScript Scripting Reference
Doc Methods

setPageRotations

50 | © (X)

Rotates the specified pages in the current document. See also getPageRotation.

Parameters
nStart (optional) A 0-based index that defines the start of an inclusive range
of pages in the document to be operated on. If nStart and nEndare
not specified, operates on all pages in the document. If only nStart
is specified, the range of pages is the single page specified by
nStart.
nEnd (optional) A 0-based index that defines the end of an inclusive range
of pages in the document to be operated on. If nStart and nEnd are
not specified, operates on all pages in the document. If only nEnd is
specified, the range of pages is 0 to nEnd.
nRotate (optional) The amount of rotation that should be applied to the target
pages. Can be 0, 90, 180, or 270. Default is 0.
Returns
Nothing
Example

Rotate pages 0 through 10 of the current document.

this.setPageRotations (0, 10, 90);

setPageTabOrder
60 | © (X

Sets the tab order of the form fields on a page. The tab order can be set by row, by column,
or by structure.

If a PDF 1.4 documents is viewed in Acrobat 6.0, tabbing between fields is in the same order
asitisin Acrobat 5.0. Similarly, if a PDF 1.5 document is opened in Acrobat 5.0, the tabbing
order for fields is the same as it is in Acrobat 6.0.

Parameters

nPage The 0-based index of the page number on which the tabbing order is
to be set.

192 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Doc Methods

cOrder The order to be used. Values are:
rows
columns
structure
Returns
Nothing
Example

Set the page tab order for all pages to rows.

for (var i = 0; i < this.numPages; i ++)
this.setPageTabOrder (i, "rows") ;

setPageTransitions

50 | © (X)

Sets the page transition for a specific range of pages. See also getPageTransition.

Parameters

nStart (optional) A 0-based index that defines the start of an inclusive range
of pages in the document to be operated on. If nStart and nEndare
not specified, operates on all pages in the document. If only nStart
is specified, the range of pages is the single page specified by
nStart.

nEnd (optional) A 0-based index that defines the end of an inclusive range
of pages in the document to be operated on. If nStart and nEndare
not specified, operates on all pages in the document. If only nEnd is
specified, the range of pages is 0 to nEnd.

aTrans (optional) The page transition array consists of three values:

[mDuration, cTransition nTransDuration].

e nDurationis the maximum amount of time the page is
displayed before the viewer automatically turns to the next page.
Set to -1 to turn off automatic page turning.

e cTransitionis the name of the transition to apply to the page.
See fullScreen. transitions for a list of valid transitions.

e nTransDuration is the duration (in seconds) of the transition
effect.

If aTrans is not present, any page transitions for the pages are
removed.

Acrobat JavaScript Scripting Reference 193

- Acrobat JavaScript Scripting Reference
Doc Methods

Returns
Nothing
Example

Put document into fullscreen mode, and apply some transitions.

this.setPageTransitions({ aTrans: [-1, "Random", 1] })
app.fullscreen = true;

spawnPageFromTemplate

® | © (X)

Spawns a page in the document using the given template, as returned by
getNthTemplate.

See templates, createTemplate, and template. spawn, which supersede this
method in later versions.

NoTe: The template feature does not work in Adobe Reader.

Parameters
cTemplate The template name.
nPage (optional) The 0-based page number before which or into which the
template is spawned, depending on the value of bOverlay. If
nPage is omitted, a new page is created at the end of the document.
bRename (optional) Whether fields should be renamed. The default is true.
bOverlay (optional, version 4.0) If £alse, the template is inserted before the
page specified by nPage. When true (the default) it is overlaid on
top of that page.
oXObject (optional, version 6.0) The value of this parameter is the return value
of an earlier call to spawnPageFromTemplate.
Returns

Prior to Acrobat 6.0, this method returned nothing. Now, this method returns an object
representing the page contents of the page spawned. This return object can then be used
as the value of the optional parameter oXObject for subsequent calls to
spawnPageFromTemplate.

NoTe: Repeatedly spawning the same page can cause a large inflation in the file size. To
avoid this file size inflation problem, spawnPageFromTemplate now returns an
object that represents the page contents of the spawned page. This return value can

194 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Doc Methods

be used as the value of the oXObject parameter in subsequent calls to the
spawnPageFromTemplate method to spawn the same page.

Example 1
var n = this.numTemplates;
var cTempl;
for (1 = 0; i < n; i++) {
cTempl = this.getNthTemplate (i) ;
this.spawnPageFromTemplate (cTempl) ;

}
Example 2 (version 6.0)

The following example spawns the same template 31 times using the oXObject
parameter and return value. Using this technique avoids overly inflating the file size.

var t = this.getNthTemplate (0)

var XO = this.spawnPageFromTemplate (t, this.numPages, false, false);
for (var i=0; 1 < 30; 1++)
this.spawnPageFromTemplate (t,this.numPages, false, false, XO);

submitForm

Submits the form to a specified URL. To call this method, you must be running inside a web
browser or have the Acrobat Web Capture plug-in installed (unless the URL uses the
"mailto” scheme, in which case it will be honored even if not running inside a web browser,

as long as the SendMail plug-in is present). Beginning with Adobe Reader 6.0, you need not
be inside a web browser to call this method.

Note: (Version 6.0), Depending on the parameters used, there are restrictions on the use of
submitForm. See the notes embedded in the description of the parameters.

The https protocol is supported for secure connections.

Parameters
CURL The URL to submit to. This string must end in #FDF if the
result from the submission is FDFor XFDF (that is, the value
of cSubmitAs is "FDF" or "XFDF") and the document is
being viewed inside a browser window.
bFDF ® (optional) Whether to submit as FDF or HTML If true,

the default, submits the form data as FDF. If £alse, submits
it as URL-encoded HTML.

This option has been deprecated, use cSubmitAs instead.

Acrobat JavaScript Scripting Reference

195

- Acrobat JavaScript Scripting Reference
Doc Methods

bEmpty (optional) When true, submit all fields, including those that
have no value. When false (the default), exclude fields
that currently have no value.

Nore: If data is submitted as XDP, XML or XFD (see the
cSubmitAs parameter, below) , the bEmpty
parameter is ignored. All fields are submitted, even
fields that are empty. See aFields below.

aFields (optional) An array of field names to submit or a string
containing a single field name.
e If supplied, only the fields indicated are submitted,
except those excluded by bEmpty.
e If omitted or null, all fields are submitted, except those
excluded by bEmpty.
e If an empty array, no fields are submitted. A submitted
FDF might still contain data if bAnnotations is true.
You can specify non-terminal field names to export an entire
subtree of fields.

Nore: If data is submitted as XDP, XML or XFD (see the
cSubmitAs parameter, below) , the aFields
parameter is ignored. All fields are submitted, even
fields that are empty. See bEmpty above.

bGet (optional, version 4.0) When true, submit using the HTTP
GET method. When false (the default), use a POST. GET is
only allowed if using Acrobat Web Capture to submit (the
browser interface only supports POST) and only if the data is
sent as HTML (that is, cSubmi tAs is HTML).

bAnnotations (optional, version 5.0) When true, annotations are included
in the submitted FDF or XML. The default is £alse. Only
applicable if cSubmitAs is FDF or XFDF.

bXML X (optional, version 5.0) If true, submit as XML. The
defaultis false.

This option has been deprecated, use cSubmitAs instead.

bIncrChanges (optional, version 5.0) When true, include the incremental
changes to the PDF in the submitted FDF. The default is
false. Only applicable if cSubmitAs is FDF. Not available
in the Adobe Reader.

bPDF ® (optional, version 5.0) If true, submit the complete PDF
document. The default is £alse. When true, all other
parameters except cURL are ignored. Not available in the
Adobe Reader.

This option has been deprecated, use cSubmitAs instead.

196 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
Doc Methods

bCanonical (optional, version 5.0) When true, convert any dates being
submitted to standard format (that is,
D: YYYYMMDDHHMmSSOHH’ mm’ ; see the PDF Reference for
details). The default is false.

bExclNonUserAnnots (optional, version 5.0) A boolean that indicates, if true, to
exclude any annotations that are not owned by the current
user. The defaultis false.

bExclFKey (optional, version 5.0) When true, exclude the "F" key. The
defaultis false.

cPassword (optional, Version 5.0) The password to use to generate the
encryption key, if the FDF needs to be encrypted before
getting submitted.

Pass the value true (no quotes), to use the password that
the user has previously entered (within this Acrobat session)
for submitting or receiving an encrypted FDF. If no password
has been entered, prompts the user to enter a password.

Regardless of whether the password is passed in or
requested from the user, this new password is remembered
within this Acrobat session for future outgoing or incoming
encrypted FDFs.

Only applicable if cSubmitAs is FDF.

bEmbedForm (optional, version 6.0) When true, the call embeds the
entire form from which the data is being submitted in the
FDF.

Only applicable if cSubmitAs is FDF.

odavaScript (optional, version 6.0) Can be used to include Before,

After, and Doc JavaScripts in a submitted FDF. If present,
the value is converted directly to an analagous CosOb3j and
used as the /JavaScript attribute in the FDF. For example:
oJavaScript:
{

Before: 'app.alert ("before!")',

After: ‘'app.alert("after")',

Doc: ["MyDocScriptl", "myFuncl()",

"MyDocScript2", "myFunc2 ()"]

}
Only applicable if cSubmitAs is FDF.

Acrobat JavaScript Scripting Reference 197

198

Acrobat JavaScript Scripting Reference

Doc Methods

cSubmitAs

bInclNMKey

aPackets

(optional, version 6.0) The format for submission. Values are:

FDF (default)
XFDF
HTML
XDP
XML
XFD
PDF

PDF means submit the complete PDF document; in this
case, all other parameters except cURL are ignored.

NoTEe: Save rights required (©): The PDF choice is not
available in Adobe Reader, unless the document has
save rights.

This parameter supercedes the individual format
parameters; however, they are considered in the following
priority order, from high to low: cSubmi tAs, bPDF, bXMI,
bFDF.

(optional, version 6.0) When true, include the "NM" key of
any annotations. The default is false.

(optional, version 6.0) An array of strings, specifying which
packets to include in an XDP submission. Possible strings
are:

template
datasets
stylesheet
xfdf
sourceSet
pdf

config
*

pd£ means that the PDF should be embedded; if pdf is not
included here, only a link to the PDF is included in the XDP.

x£df means to include annotations in the XDP (since that
packet uses XFDF format).

* means that all packets should be included in the XDP.
The defaultis: ["datasets", "xfdf"].

This parameter is only applicable if cSubmitAs is XDP.

NoTe: Save rights required (©): When submitting a
document as XDP from the Adobe Reader with
aPackets set to pdf (or *, which implies pdf), the
document must have document save rights.

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
Doc Methods

cCharset (optional, version 6.0) The encoding for the values
submitted. String values are:

utf-8
utf-16
Shift-JIS
BigFive
GBK

UHC

If not passed, the current Acrobat behavior applies. For XML-
based formats, ut £-8 is used. For other formats, Acrobat
tries to find the best host encoding for the values being
submitted.

XFDF submission ignores this value and always uses ut£-8.

Returns
Nothing

Example 1
Submit the form to the server.

this.submitForm("http://myserver/cgi-bin/myscript.cgi#fFDF") ;

Example 2

var aSubmitFields = new Array("name", "id", "score");
this.submitForm ({
CURL: "http://myserver/cgi-bin/myscript.cgi#FDF",
aFields: aSubmitFields,
cSubmitAs: "FDF" // the default, not needed here

1
Example 3

This example illustrates a shortcut to submitting a whole subtree. Passing "name" as part of

"o "o

the £ield parameter, submits "name . title’ "name. first’ "name.middle"and
"name. last”
this.submitForm("http://myserver/cgi-bin/myscript.cgi#fFDF",

true, false, '"name");

Example 4

this.submitForm ({
cURL: "http://myserver/cgi-bin/myscript.cgi#FDF",
cSubmitAs: "XFDF"

b

syncAnnotScan

5.0 (AJRX)

Guarantees that all annotations will be scanned by the time this method returns.

Acrobat JavaScript Scripting Reference 199

- Acrobat JavaScript Scripting Reference
Error Objects

In order to show or process annotations for the entire document, all annotations must have
been detected. Normally, a background task runs that examines every page and looks for
annotations during idle time, as this scan is a time consuming task. Much of the annotation
behavior works gracefully even when the full list of annotations is not yet acquired by
background scanning.

In general, you should call this method if you want the entire list of annotations.

See also getAnnots.

Parameters

None

Returns

Nothing

Example

The second line of code will not be executed until syncAnnotScan returns and this will
not occur until the annot scan of the document is completed.

this.syncAnnotScan() ;
annots = this.getAnnots ({nSortBy:ANSB Author}) ;
// now, do something with the annotations.

Error Objects

Error objects are dynamically created whenever an exception is thrown from methods or
properties implemented in Acrobat JavaScript. Several sub-classes of the Exrror object can
be thrown by core JavaScript (EvalError, RangeError, SyntaxError, TypeError,
ReferenceError, URLError). They all have the Error object as prototype. Acrobat
JavaScript can throw some of these exceptions, or implement subclasses of the Exrror
object at its convenience. If your scripts are using the mechanism of try/catcherror
handling, the object thrown should be one of the types listed in the following table.

Error Object Brief Description

RangeError Argument value is out of valid range
TypeError Wrong type of argument value
ReferenceError Reading a variable that does not exist
MissingArgError Missing required argument
NumberOfArgsError Invalid number of arguments to a method
InvalidSetError A property set is not valid or possible
InvalidGetError A property get is not valid or possible

200 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

Error Properties

Error Object Brief Description

OutOfMemoryError Out of memory condition occurred

NotSupportedError Functionality not supported in this configuration (for
example,: Reader)

NotSupportedHFTError HFTis not available (a plug-in may be missing)

NotAllowedError Method or property is not allowed for security reasons

GeneralError Unspecified error cause

RaiseError Acrobat internal error

DeadObjectError Object is dead

HelpError User requested for help with a method

Error object types implemented by Acrobat JavaScript inherit properties and methods
from the core Error object. Some Acrobat Javascript objects may implement their own
specific types of exception. A description of the Error subclass (with added methods and
properties, if any) should be provided in the documentation for the particular object.

Example

Print all properties of the Exrror object to the console.

try {

app.alert(); // one argument is required for alert

} catch(e) {
for (var i in e)

console.println(i + ": " + e[i])

Error Properties

fileName

6.0

The name of the script which caused the exception to be thrown.

Type: String Access:R.

Acrobat JavaScript Scripting Reference

201

- Acrobat JavaScript Scripting Reference
Error Methods

lineNumber

6.0

The offending line number from where an exception was thrown in the JavaScript code.

Type: Integer Access:R.
message
6.0
The error message providing details about the exception.
Type: String Access:R.
name
6.0

The name of the Error object subclass, indicating the type of the Exrror object instance.

Type: String Access: R/W.

Error Methods

toString

6.0

Gets the error message providing details about the exception.

Parameters

None

Returns

The error message string. (See message.)

Event Object

All JavaScripts are executed as the result of a particular event. Each event has a type and a
name. The events detailed here are listed as type/name pairs.

202 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Event Object

For each of these events, Acrobat JavaScript creates an event object. During the occurrence
of each event, you can access this event object to get, and possibly manipulate, information
about the current state of the event.

It is important for JavaScript writers to know when these events occur and in what order
they are processed. Some methods or properties can only be accessed during certain
events; therefore, a knowledge of these events will prove useful.

Event Type/Name Combinations

App/Init

When the Viewer is started, the Application Initialization Event occurs. Script files, called
Folder Level JavaScripts, are read in from the application and user JavaScript folders. They
load in the following order: Config. js,glob. js, all other files, then any user files.

This event defines the name and type properties for the event object.

This event does not listen to the rc return code.

Batch/Exec

5.0

A batch event occurs during the processing of each document of a batch sequence.
JavaScripts that authored as part of a batch sequence can access the event object upon
execution.

This event defines the name, target, and type properties for the event object. The
target in this event is the document object.

This event listens to the rec return code. If the return code is set to false, the batch
sequence is stopped.

Bookmark/Mouse Up

5.0

This event occurs whenever a user clicks on a bookmark that executes a JavaScript.

This event defines the name, target, and type properties for the event object. The
target in this event is the bookmark object that was clicked.

This event does not listen to the rc return code.

Console/Exec

5.0

A console event occurs whenever a user evaluates a JavaScript in the console.
This event defines the name, and type properties for the event object.

This event does not listen to the rc return code.

Acrobat JavaScript Scripting Reference 203

204

Acrobat JavaScript Scripting Reference
Event Object

Doc/DidPrint

5.0

This event is triggered after a document has printed.

This event defines the name, target, and type properties for the event object. The
target in this event is the document object.

This event does not listen to the rc return code.
Doc/DidSave
5.0

This event is triggered after a document has been saved.

This event defines the name, target, and type properties for the event object. The
target in this event is the document object.

This event does not listen to the rc return code.

Doc/Open

This event is triggered whenever a document is opened. When a document is opened, the
document level script functions are scanned and any exposed scripts are executed.

This event defines the name, target, targetName, and type properties for the event
object. The target in this event is the document object.

This event does not listen to the rc return code.

Doc/WillClose

5.0

This event is triggered before a document is closed.

This event defines the name, target, and type properties for the event object. The
target in this event is the document object.

This event does not listen to the rc return code.

Doc/WillPrint

5.0

This event is triggered before a document is printed.

This event defines the name, target, and type properties for the event object. The
target in this event is the document object.

This event does not listen to the rc return code.

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Event Object

Doc/WillSave

5.0

This event is triggered before a document is saved.

This event defines the name, target, and type properties for the event object. The
target in this event is the document object.

This event does not listen to the rc return code.

External/Exec

5.0
This event is the result of an external access, for example, through OLE, AppleScript, or
loading an FDF.
This event defines the name and type properties for the event object.
This event does not listen to the rc return code.
Field/Blur
4.05
The blur event occurs after all other events just as the field loses focus. This event is
generated regardless of whether or not a mouse click is used to deactivate the field (for
example, tab key).
This event defines the modifier, name, shift, target, targetName, type, and
value properties for the event object. The target in this event is the field whose validation
script is being executed.
This event does not listen to the rc return code.
Field/Calculate

This event is defined when a change in a form requires that all fields that have a calculation
script attached to them be executed. All fields that depend on the value of the changed
field will now be re-calculated. These fields may in turn generate additional Field/Validate,
Field/Blur, and Field/Focus events.

Calculated fields may have dependencies on other calculated fields whose values must be
determined beforehand. The calculation order array containsan ordered list of
all the fields in a document that have a calculation script attached. When a full calculation is
needed, each of the fields in the array is calculated in turn starting with the zeroth index of
the array and continuing in sequence to the end of the array.

To change the calculation order of fields, use the Advanced>Forms>Set Field Calculation
Order... menu item in Adobe Acrobat.

This event defines the name, source, target, targetName, type, and value
properties for the event object. The target in this event is the field whose calculation script
is being executed.

Acrobat JavaScript Scripting Reference 205

- Acrobat JavaScript Scripting Reference
Event Object

This event does listen to the re return code. If the return code is set to false, the field’s
value is not changed. If true, the field takes on the value found in the value.

Field/Focus

4.05

The focus event occurs after the mouse down but before the mouse up after the field
gains the focus. This routine is called whether or not a mouse click is used to activate the
field (for example, tab key) and is the best place to perform processing that must be done
before the user can interact with the field.

This event defines the modifier, name, shift, target, targetName, type, and
value properties for the event object. The target in this event is the field whose validation
script is being executed.

This event does not listen to the rc return code.

Field/Format

Once all dependent calculations have been performed the format event is triggered. This
event allows the attached JavaScript to change the way that the data value appears to a
user (also known as its presentation or appearance). For example, if a data value is a
number and the context in which it should be displayed is currency, the formatting script
can add a dollar sign ($) to the front of the value and limit it to two decimal places past the
decimal point.

This event defines the commi tKey, name, target, targetName, type, value, and
willCommit properties for the event object. The target in this event is the field whose
format script is being executed.

This event does not listen to the re return code. However, the resulting valueis used as
the fields formatted appearance.

Field/Keystroke

The keystroke event occurs whenever a user types a keystroke into a text box or
combobox (this includes cut and paste operations), or selects an item in a combobox drop
down or 1istboxfield. A keystroke script may want to limit the type of keys allowed. For
example, a numeric field might only allow numeric characters.

The user interface for Acrobat allows the author to specify a Selection Change script for
listboxes. The script is triggered every time an item is selected. This is implemented as the
keystroke event where the keystroke value is equivalent to the user selection. This behavior
is also implemented for the combobox—the "keystroke" could be thought to be a paste
into the text field of the value selected from the drop down list.

There is a final call to the keystroke script before the validate event is triggered. This call sets
the willCommit to true for the event. With keystroke processing, it is sometimes useful
to make a final check on the field value before it is committed (pre-commit). This allows the
script writer to gracefully handle particularly complex formats that can only be partially
checked on a keystroke by keystroke basis.

206 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Event Object

The keystroke event of text fields is called in situations other than when the user is
entering text with the keyboard or committing the field value. It is also called to validate
the default value of a field when set through the Ul or by JavaScript, and to validate entries
provided by autofill. In these situations not all properties of the event are defined.
Specifically event . target will be undefined when validating default values and
event.richChange and event.richValue will be undefined when validating
autofill entries.

This event defines the commi tKey, change, changeEx, keyDown, modifier, name,
selEnd, selStart, shift, target (except when validating default values),
targetName, type, value, and willCommit properties for the event object. The
target in this event is the field whose keystroke script is being executed.

This event does listen to the rc return code. If set to £alse, the keystroke is ignored. The
resulting change is used as the keystroke if the script desires to replace the keystroke
code. The resultant selEnd and selStart properties can change the current text
selection in the field.

Field/Mouse Down

The mouse down event is triggered when a user starts to click on a form field and the
mouse button is still down. It is advised that you perform very little processing (that is, play
a short sound) during this event. A mouse down event will not occur unless amouse
enter event has already occurred.

This event defines the modifier, name, shift, target, targetName, and type
properties for the event object. The target in this event is the field whose validation script is
being executed.

This event does not listen to the rc return code.

Field/Mouse Enter

The mouse enter event is triggered when a user moves the mouse pointer inside the
rectangle of a field. This is the typical place to open a text field to display help text, and so
on.

This event defines the modifier, name, shift, target, targetName, and type
properties for the event object. The target in this event is the field whose validation script is
being executed.

This event does not listen to the rc return code.

Field/Mouse Exit

The mouse exit eventisthe opposite of the mouse enter eventand occurs when a
user moves the mouse pointer outside of the rectangle of a field. Amouse exit event
will not occur unless amouse enter event has already occurred.

This event defines the modifier, name, shift, target, targetName, and type
properties for the event object. The target in this event is the field whose validation script is
being executed.

This event does not listen to the rc return code.

Acrobat JavaScript Scripting Reference 207

208

Acrobat JavaScript Scripting Reference

Event Object

Field/Mouse Up

The mouse up event is triggered when the user clicks on a form field and releases the
mouse button. This is the typical place to attach routines such as the submit action of a
form. Amouse up event will not occur unless amouse down event has already occurred.

This event defines the modifier, name, shift, target, targetName, and type
properties for the event object. The target in this event is the field whose validation script is
being executed.

This event does not listen to the rc return code.

Field/Validate

Regardless of the field type, user interaction with a field may produce a new value for that
field. After the user has either clicked outside a field, tabbed to another field, or pressed the
enter key, the user is said to have commi t ted the new data value.

The validate event is the first event generated for a field after the value has been
committed so that a JavaScript can verify that the value entered was correct. If the validate
event is successful, the next event triggered is the calculate event.

This event defines the change, changeEx, keyDown, modifier, name, shift,
target, targetName, type, and value properties for the event object. The target in
this event is the field whose validation script is being executed.

This event does listen to the re return code. If the return code is set to false, the field value
is considered to be invalid and the value of the field is unchanged.

Link/Mouse Up

5.0
This event is triggered when a link containing a JavaScript action is activated by the user.
This event defines the name, target, and type properties for the event object. The
target in this event is the document object.
This event does not listen to the rc return code.
Menu/Exec
5.0

A menu event occurs whenever JavaScript that has been attached to a menu item is
executed. In Acrobat 5.0, the user can add a menu item and associate JavaScript actions
with it. For example,

app.addMenuItem({ cName: "Hello", cParent: "File",
cExec: "app.alert ('Hello',3);", nPos: 0});

The script "app.alert ('Hello', 3) ; " will execute during amenu event. There are
two ways for this to occur:

1. Through the user interface, the user can click on that menu item and the script will
execute; and

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Event Object

2. Programmatically, when app . execMenulItem ("Hello") is executed (perhaps,
during a mouse up event of a button field), the script will execute.

This event defines the name, target, targetName, and type properties for the event
object. The target in this event is the currently active document, if one is open.

This event listens to the rc return code in the case of the enable and marked proc for menu
items. A return code of £alse will disable or unmark a menu item. A return code of true
will Event Processing

Page/Open

4.05

This event happens whenever a new page is viewed by the user and after page drawing for
the page has occurred.

This event defines the name, target, and type properties for the event object. The
target in this event is the document object.

This event does not listen to the rc return code.

Page/Close

4.05

This event happens whenever the page being viewed is no longer the current page; that is,
the user switched to a new page or closed the document.

This event defines the name, target, and type properties for the event object. The
target in this event is the document object.

This event does not listen to the rc return code.

Document Event Processing

When a document is opened, the Doc/Open event occurs: functions are scanned, and any
exposed scripts are executed. Next, if the NeedAppearances key in the PDF file is set to
truein the AcroForm dictionary, the formatting scripts of all form fields in the document
are executed. (See Section 3.6.1 and 7.6.1 of the PDF Reference.) Finally, the Page/Close
event occurs.

NoTe: For user’s who create PDF files containing form fields with the NeedAppearances key
set to true, be sure to do a “Save As” before posting such files on the Web.
Performing a “Save As” on a file generates the form appearances, which are saved
with the file. This increases the performance of Reader when it loads the file within a
Web browser.

Acrobat JavaScript Scripting Reference 209

- Acrobat JavaScript Scripting Reference
Event Properties

Form Event Processing

The order in which the form events occur is illustrated in the state diagram below. This
illustrates certain dependencies that are worth noting, for example, the Mouse Up event
cannot occur if the Focus event did not occur.

Keystroke
or

Selection
Change*
Validate

O

@

*Selection change for list box only.

Event Properties

change

Specifies the change in value that the user has just typed. This is replaceable such that if the
JavaScript wishes to substitute certain characters, it may. The change may take the form of
an individual keystroke or a string of characters (for example if a paste into the field is
performed).

Type: String Access: R/W.

Example
Change all keystrokes to upper case.

// Custom Keystroke for text field
event .change = event.change.toUpperCase() ;

210 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

Event Properties

changeEx

5.0

Contains the export value of the change and is available only during a Field/Keystroke
event for 1istbox and combobox.

For the 1istbox, the keystroke script, if any, is entered under the Selection Change tab in
the properties dialog.

For the combobox, changeEx is only available if the pop-up part of the combo is used,
that is, a selection (with the mouse or the keyboard) is being made from the pop-up. If the
combo is editable and the user types in an entry, the Field/Keystroke event behaves as for a
text field (that is, there are no changeEx or keyDown event properties).

Beginning with Acrobat 6.0, event . changeEx is defined for text fields. When
event.fieldFull is true changeEx is set to the entire text string the user
attempted to enter and event.change is the text string cropped to what fits within the

field. Use event.richChangeEx (and event.richChange) to handle rich text fields.

Type: various Access:R.

Example 1

This example illustrates the differences between event .value, event . changeExand
event.change. The script below is document level JavaScript used to process a custom
keystroke of an editable combobox. The same script can basically be used to process a
listboxas well. Try this example with £ield.commitOnSelChange first set to
false, then set to true to compare responses.

// convenience function for printing to console
var cp = function(msg) { console.println(msg) }

// document level script to process keystrokes of editable combo box
function customKey Combo ()
if (event.willCommit)

cp ("Committed") ;

// This is the face value of the committed item

cp("event.value = " + event.value);

// These next two values are not relavent to a committed field.

// Each value is the empty string

cp("event.change = " + event.change);

cp("event.changeEx = " + event.changeEx) ;
}
else {

cp ("Not Committed") ;

/* event.value is the export value of the current item, the one
before the change. */

cp("event.value = " + event.value);

/* This is the change. It could be the face value of a listed
item, or a keystroke (if typing/pasting into an edit box is
permitted) . */

Acrobat JavaScript Scripting Reference

211

- Acrobat JavaScript Scripting Reference
Event Properties

cp("event.change = " + event.change);

/* This is the export value of the change. If the export value
wasn't given in the UI, then this is the same as
event .value. */

cp("event.changeEx = " + event.changeEx) ;

/* If event.changeEx is the empty string, then a menu item has
not been chosen. User is typing or pasting into the editable
field. */

if (event.changeEx == "") {

/* If the length of event.change is one, then user has
probably pressed a single key to input into the edit box.
Or, user could have pasted a single keystroke as well.*/

switch (event.change.length)
case 0:
cp ("User has backspaced or deleted one or more "
+ "characters") ;
break;
case 1:
cp ("User enters data into editable field: "
+ event.change) ;
// process keystroke, say, change to upper case.
event .change = event.change.toUpperCase () ;
cp ("User has entered a single char, modified to "
+ event.change) ;
break;
default:
cp ("User has pasted in some data, modified to "
+ event.change) ;
// process keystroke, say, change to upper case.
event .change = event.change.toUpperCase () ;
cp ("User enters data into editable field: "
+ event.change) ;
break;

}

/* Display the input so far, AFMergeChange defined in
aform.js */

cp("User Input so far: " + AFMergeChange (event)) ;
/* event.changeEx != "", so user has simply selected a menu item
and not typed or pasted into the edit box. */
else {

cp ("Menu Item selected") ;

}
}

Understanding this example is key to successfully handling a 1istbox or combobox.

Example 2

For an example of the use of changeEx with text fields, see the example following
fieldFull.

212 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

Event Properties

commitKey

4.0

Determines how a form field will lose focus. Values are:

0: Value was not committed (for example, escape key was pressed).

1: Value was committed because of a click outside the field using the mouse.
2: Value was committed because of hitting the enter key.

3: Value was committed by tabbing to a new field.

Type: Number Access:R.

Example

To automatically display an alert dialog after a field has been committed add the following
to the field’s format script:

if (event.commitKey != 0)
app.alert ("Thank you for your new field value.");

fieldFull

6.0

Only available in keystroke events for text fields. Set to true when the user attempts to
enter text which does not fit in the field due to either a space limitation or the maximum
character limit. When £ieldFullis true, event.changeEx is set to the entire text
string the user attempted to enter and event . change is the text string cropped to what
fits within the field.

Type: Boolean Access: R Events: Keystroke.

Example
Test whether user has overfilled the text field.

// Custom Keystroke script for a text field. Initially, the field is set
// so that text does not scroll.
if (event.fieldFull)
{
app.alert ("You've filled the given space with text,"
+ " and as a result, you've lost some text. I'll set the field to"
+ " scroll horizontally, and paste in the rest of your"
+ " missing text.");
event .target.doNotScroll = false;
event .change = event.changeEx;

Acrobat JavaScript Scripting Reference 213

- Acrobat JavaScript Scripting Reference
Event Properties

keyDown

5.0

Available only during a keystroke event for 1istbox and combobox. For a 1istbox or
the pop-up part of a combobox, the value is true if the arrow keys were used to make a
selection, false otherwise.

For the combobox, keyDown is only available if the pop-up part of it is used, that is, a
selection (with the mouse or the keyboard) is being made from the pop-up. If the combo is
editable and the user types in an entry, the Field/Keystroke event behaves as for a text
field (that is, there are no changeEx or keyDown event properties).

Type: Boolean Access:R.

modifier

Whether the modifier key is down during a particular event. The modifier key on the
Microsoft Windows platform is Control and on the Macintosh platform is Option or
Command. Themodifier is not supported on UNIX.

Type: Boolean Access: R.
name
4.05
The name of the current event as a text string. The type and name together uniquely
identify the event. Valid names are:
Keystroke Mouse Exit
Validate WillPrint
Focus DidPrint
Blur WillSave
Format DidSave
Calculate Init
Mouse Up Exec
Mouse Down Open
Mouse Enter Close
Type: String Access: R Events: all.
rc

Used for validation. Indicates whether a particular event in the event chain should succeed.
Set to falseto prevent a change from occurring or a value from committing. By default
rc is true.

214 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

Event Properties

Type: Boolean Access: R/W Events: Keystroke, Validate,
Menu.

richChange

6.0

Specifies the change in value that the user has just typed. The richChange property is
only defined for rich text fields and mirrors the behavior of the event . change property.
The value of richChange is an array of Span Objects which specify both the text entered
into the field and the formatting. Keystrokes are represented as single member arrays, while
rich text pasted into a field is represented as an array of arbitrary length.

When event. fieldFull is true richChangeEx is set to the entire rich formatted
text string the user attempted to enter and event . richChange is the rich formatted
text string cropped to what fits within the field. Use event .changeEx (and
event.change) to handle (plain) text fields.

Type: Array of Span ObjectsAccess: R/W Events: Keystroke.

Related objects and properties are the Span Object, field.defaultStyle,
field.richText, field.richValue, event.richvalue, and
annot.richContents.

Example

This example changes the keystroke to upper case, alternately colors the text blue and red,
and switches underlining off and on.

// Custom Keystroke event for text rich field.
var span = event.richChange;
for (var i=0; i<span.length; i++)
{
span[i] .text = span[i] .text.toUpperCase() ;
span[i] .underline = !span[i] .underline;
span[i] .textColor = (span[i] .underline) ? color.blue : color.red;

}

event .richChange = span;

richChangeEx

6.0

The richChangeEx property is only defined for rich text fields and mirrors the behavior
of the event .changeEx property for text fields. The value of richChangeEx is an
array of Span Objects which specify both the text entered into the field and the formatting.
Keystrokes are represented as single member arrays, while rich text pasted into a field is
represented as an array of arbitrary length.

Acrobat JavaScript Scripting Reference 215

- Acrobat JavaScript Scripting Reference
Event Properties

When event. fieldFull is true richChangeExis set to the entire rich formatted
text string the user attempted to enter and event . richChange is the rich formatted
text string cropped to what fits within the field. Use event .changeEx (and
event.change) to handle (plain) text fields.

Type: Array of Span ObjectsAccess: R/W Events: Keystroke.

Related objects and properties are the Span Object, field.defaultStyle,

field.richText, field.richValue event.richChange event.richvValue,
and annot.richContents.

Example

If the text field is filled up by the user, allow additional text by setting the field to scroll.
if (event.fieldFull)

{
app.alert ("You've filled the given space with text,"
+ " and as a result, you've lost some text. I'll set the field to"
+ " scroll horizontally, and paste in the rest of your"
+ " missing text.");
event.target.doNotScroll = false;
if (event.target.richText)
event .richChange = event.richChangeEx
else
event .change = event.changeEx;

}
See also event.fieldFull.

richValue

6.0

This property mirrors the £ield.richValue property of the field and the
event.value property for each event.

Type: Array of Span ObjectsAccess: R/W Events: Keystroke.

Related objects and properties are the Span Object, field.defaultStyle,
field.richText, field.richValue, event.richChange,
event.richChangeEx, and annot.richContents.

Example

This example turns all bold text into red underlined text.

// Custom Format event for a rich text field.
var spans = event.richValue;
for (var i = 0; i < spans.length; i++)

if (spans[i] .fontWeight >= 700)

{

216

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

Event Properties

spans [i] .textColor = color.red;
spans [i] . fontWeight = 400; // change to default weight
spans [i] .underline = true;
}
}

event .richvalue = spans;

selEnd
The ending position of the current text selection during a keystroke event.
Type: Integer Access: R/W.
Example
This is the function AFMergChange taken from the file AForms . js, in the application
JavaScripts folder. This function merges the last change (of a text field) with the
uncommitted change. This function uses bother selEnd and selStart.
function AFMergeChange (event)
{
var prefix, postfix;
var value = event.value;
if (event.willCommit) return event.value;
if (event.selStart >= 0)
prefix = value.substring(0, event.selStart) ;
else prefix = "";
if (event.selkEnd >= 0 && event.selkEnd <= value.length)
postfix = value.substring(event.selknd, value.length) ;
else postfix = "";
return prefix + event.change + postfix;
}
selStart
The starting position of the current text selection during a keystroke event.
Type: Integer Access: R/W.
Example
See the example following selEnd.
shift

Whether the shift key is down during a particular event.

Type: Boolean Access:R.

Acrobat JavaScript Scripting Reference 217

- Acrobat JavaScript Scripting Reference
Event Properties

Example

The following is a mouse up button action.

if (event.shift)
this.gotoNamedDest ("dest2") ;
else
this.gotoNamedDest ("destl1") ;

source
5.0

The Field Object that triggered the calculation event. This is usually different from the
target of the event, that is, the field that is being calculated.
Type: object Access:R.

target
The target object that triggered the event. In all mouse, focus, blur, calculate, validate, and
format events it is the Field Object that triggered the event. In other events, such as page
open and close, it is the Doc Object or this Object.
Type: object Access:R.

targetName

Tries to return the name of the JavaScript being executed. Can be used for debugging
purposes to help better identify the code causing exceptions to be thrown. Common
values of targetName include:

e the folder-level script file name for App/Init events;
e the Doc-level script name forDoc/Open events;
e the PDF file name being processed for Batch/Exec events;

e the Field name for Field/Blur, Field/Calculate, Field/Focus, Field/Format, Field/Keystroke,
Field/Mouse Down, Field/Mouse Enter, Field/Mouse Exit,Field/Mouse Up and
Field/Validate events.

o the Menu item name for Menu/Exec events.

If there is an identifiable name, Acrobat EScript reports targetName when an exception is
thrown.

Type: String Access: R.

218 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

Event Properties

Example

The first line of the folder level JavaScript file conserve. js has an error in it, when the
Acrobat Viewer started, an exception is thrown. The standard message reveals quite clearly
the source of the problem.

MissingArgError: Missing required argument.
App.alert:1:Folder-Level : App:conserve.js
===> Parameter cMsg.

type
5.0
The type of the current event as a text string. The type and name together uniquely identify
the event. Valid types are:
Batch External
Console Bookmark
App Link
Doc Field
Page Menu
Type: String Access:R.
value

This property has different meanings for different £ield events.

Field/Validate event

For the Field/Validate event, this is the value that the field contains when it is committed.
For a combobox, this is the face wvalue, not the export wvalue (see changeEx for
the export value).

Example
For example, the following JavaScript verifies that the field value is between zero and 100.

if (event.value < 0 || event.value > 100) {
app.beep (0) ;
app.alert ("Invalid value for field " + event.target.name) ;
event.rc = false;

Acrobat JavaScript Scripting Reference 219

- Acrobat JavaScript Scripting Reference
Event Properties

Field/Calculate event

For a Field/Calculate event, JavaScript should set this property. It is the value that the field
should take upon completion of the event.

Example

For example, the following JavaScript sets the calculated value of the field to the value of
the SubTotal field plus tax.

var f = this.getField("SubTotal") ;
event.value = f.value * 1.0725;

Field/Format event

For a Field/Format event, JavaScript should set this property. It is the value used when
generating the appearance for the field. By default, it contains the value that the user has
committed. For a combobox, this is the face wvalue not the export value (see
changeEx for the export value).

Example
For example, the following JavaScript formats the field as a currency type of field.
event.value = util.printf ("$%.2f", event.value);
Field/Keystroke event
The current value of the field. If modifying a text field, for example, this is the text in the text
field before the keystroke is applied.
Field/Blur and Field/Focus events

The current value of the field. During these two events, event . value s read-only, that is,
the field value cannot be changed by setting event.value.

Beginning with Acrobat 5.0, for a 1istboxthat allows multiple selections (see
field.multipleSelection), if the field value is an array (that is, there are multiple
selections currently selected), event . value returns an empty string when getting, and
does not accept setting.

Type: various Access: R/W.

willCommit

Verifies the current keystroke event before the data is committed. This is useful to check the
target form field values and for example verify if character data instead of numeric data was
entered. JavaScript sets this property to true after the last keystroke event and before
the field is validated.

Type: Boolean Access:R.

Example

var value = event.value
if (event.willCommit)

220 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
FDF Object

// Final value checking.
else
// Keystroke level checking.

FDF Object
6.0 Q)

This object corresponds to a PDF-encoded data exchange file. The most familiar use of FDF
files is to contain forms data that is exported from a PDF file. FDF files can also be used as
general purpose data files. It is for this later purpose that the FDF object exists.

(Security ®): All methods and properties marked with ®inits quickbar are available only
during batch, console, application initialization and menu events.

FDF Properties

deleteOption
60 O ®©| O

Indicates whether the FDF file should be automatically deleted after it is processed. This is a
generic value that may or may not be used, depending on the content of the FDF file and
how it is processed. It is used for embedded files beginning in Acrobat 6.0. Allowed values
are

0 (default): Acrobat will automatically delete the FDF file after processing

1: Acrobat will not delete the FDF file after processing (however a web or email browser
may still delete the file).

2: Acrobat will prompt the user to determine whether to delete the FDF file after
processing (however a web or email browser may still delete the file).

Type: Integer Access: R/W.
isSigned
60 | ® IX)

Returns true if the FDF data file is signed.

Type: Boolean Access:R.

Acrobat JavaScript Scripting Reference 221

- Acrobat JavaScript Scripting Reference
FDF Methods

Example
See if the fdf is signed.

var fdf = app.openFDF ("/C/temp/myDoc.fdf") ;
console.println("It is "+ fdf.isSigned + " that this FDF is signed");
fdf.close() ;

See a more complete example following £df . signatureSign

numEmbeddedFiles

60 | ® o

The number of files embedded in the FDF file. If the FDF object is a valid FDF file, no
exceptions will be thrown.

Type: Integer Access: R.
Example

Create a new FDF object, embed a PDF doc, save the FDF, open the FDF again, and count
the number of embedded files.

var fdf = app.newFDF ()

fdf .addEmbeddedFile (" /C/myPDFs/myDoc.pdf")

fdf.save ("/c/temp/myDocWrapper.£fdf") ;

fdf = app.openFDF ("/c/temp/myDocWrapper.fdf") ;

console.println (“"The number of embedded files =
+ fdf.numEmbeddedFiles) ;

fdf.close() ;

FDF Methods

addContact
60 ©O| O O

Adds a contact to the FDF file.

Parameters

oUserEntity Thisis a UserEntity Generic Object which list the contact to be added
to the FDF file.

Returns

Throws an exception on failure.

222 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
FDF Methods

Example
var oEntity={firstName:"Fred", lastName:"Smith", fullName:"Fred Smith"};
var £ = app.newFDF () ;
f.addContact (oEntity) ;
f.save("/c/temp/FredCert.fdf");
addEmbeddedFile

0 |0]®] O

Add the specified file to the end of the array of embedded files in the FDF file. Anyone
opening the FDF file will be instructed to save the embedded file or files according to
nSaveOptions. If the embedded file is a PDF file, the file will be opened and displayed in
the viewer. If the embedded file is an FDF file, the file will be opened by the viewer for
processing. FDF files containing embedded files were supported beginning with Acrobat
4.05. An example use for embedding PDF files is when these files are hosted on an HTTP
server and it is desired that the user clicks to download and save the PDF file, rather then
viewing the file in the browser. There is no relationship between these embedded files and
files that are associated with forms data that is stored in an FDF file.

Parameters
cDIPath (optional) A device-independent absolute path to a file on the
user’s hard drive. If not specified, the user is prompted to locate a
file. See File Specification Strings in the PDF Reference for the exact
syntax of the path.
nSaveOptions (optional) How the embedded file will be presented to the person

opening this FDF file, where the file will be saved, and whether the
file will be deleted after it is saved. Values are:
e 0: The file will be automatically saved to the Acrobat document
folder.
e 1 (the default): The user will be prompted for a filename to
which to save the embedded file.
e 2:Should not be used.
e 3: The file will be automatically saved as a temporary file and
deleted during cleanup (when Acrobat is closed).
In Acrobat 4.05 through 5.05, for values of 0 and 3, the user is
prompted for the location of the save folder if they have not
already set this value.
For all values of nSaveOptions, if the file is a PDF or FDF file it is
automatically opened by Acrobat once it is saved.

Acrobat JavaScript Scripting Reference 223

- Acrobat JavaScript Scripting Reference
FDF Methods

Returns

Throws an exception if this operation could not be completed, otherwise returns the
number of embedded files that are now in the FDF file.

Example
Create a new FDF, embed a PDF doc, then save.

var fdf = app.newFDF ()
fdf .addEmbeddedFile (" /C/myPDFs/myDoc.pdf") ;
fdf.save ("/c/temp/myDocs.fdAf") ;

addRequest
60 ©O| ®©| QO

Adds a request to the FDF file. There can be only one request in an FDF file. If the FDF file
already contains a request, it is replaced with this new request.

Parameters

cType What is being requested. Currently the only valid value is the
string “CMS", which is a request for contact information.

cReturnAddress The return address string for the request. This must begin with
mailto:, http: or https: and be of the form
"http://www.acme.com/cgi.pl" or
"mailto:jdoe@adobe.com"

cName (optional) The name of the person or organization that has
generated the request.

Returns

Throws an exception if there is an error.

Example

var £ = app.newFDF () ;
f.addRequest ("CMS", "http://www.acme.com/cgi.pl", "Acme Corp");
f.save("/c/tmp/request.fdf");

close

6.0 ® O

Immediately closes the FDF file.

224 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
FDF Methods

Parameters

None

Returns
Throws an exception if there is an error.

See the £df . save method, which also closes an FDF file.

Example

The example following addEmbeddedFileillustrates £df.close.

mail

6.0 ®| O

This method saves the FDF Object as a temporary FDF file and mails this file as an
attachment to all recipients, with or without user interaction. The temporary file is deleted
once it is no longer needed.

See alsomailGetAddrs, mailMsg, mailDoc, mailFormand report.mail.

NoTte: On Windows, the client machine must have its default mail program configured to
be MAPI enabled in order to use this method.

Parameters
buIl (optional) Whether to display a user interface. If true (the default)
the rest of the parameters are used to seed a compose-new-message
window that is displayed to the user. If £alse, the cTo parameter is
required and all others are optional.
cTo (optional) A semicolon-separated list of recipients for the message.
cCc (optional) A semicolon-separated list of CC recipents for the message.
cBcc (optional) A semicolon-separated list of BCC recipents for the
message.
cSubject (optional) The subject of the message. The length limit is 64k bytes.
cMsg (optional) The content of the message. The length limit is 64k bytes.
Returns

Throws an exception if there is an error.

Example

var fdf = app.openFDF("/c/temp/myDoc.fdf");
/* This will pop up the compose new message window */

Acrobat JavaScript Scripting Reference 225

- Acrobat JavaScript Scripting Reference
FDF Methods

fdf .mail () ;
/* This will send out the mail with the attached FDF file to
funle@fun.com and fun2e@fun.com */

fdf .mail (false, "funlefun.com", "fun2@fun.com", "",
"This is the subject", "This is the body.") ;

save

60 ©O| O O

Save the FDF Object as a file. A save will always occur. The file is closed when it is saved, and
the FDF object no longer contains a valid object reference.

See the £df . close method, which also closes an FDF file.

Parameters
cDIPath The device-independent path of the file to be saved.
NoTEe: (Security ®): cDIPath must be a Safe Path and must have an
extension of . £df.
Returns

Throws an exception if there is an error.

Example
Create a new FDF, embed a PDF doc, then save.

var fdf = app.newFDF ()
fdf .addEmbeddedFile (" /C/myPDFs/myDoc.pdf") ;
fdf.save ("/c/temp/myDocs.fdf") ;

signatureClear

0 |0]®] O

If the FDF Object is signed, clears the signature and returns true if successful. Does
nothing if the FDF object is not signed. Does not save the file.

Parameters

None

Returns

true on success.

226 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
FDF Methods

signatureSign

0 |©|®]Q

Sign the FDF Object with the specified security object. FDF objects can be signed only
once. The FDF object is signed in memory and is not automatically saved as a file to disk.
Call save to save the FDF object after it is signed. Call signatureClear to clear FDF

signatures.
Parameters

oSig The SecurityHandler Object that is to be used to sign. Security objects
normally require initialization before they can be used for signing.
Check the documentation for your security handler to see if it is able
to sign FDF files. The signFDF property of the SecurityHandler
Object will indicate whether a particular security object is capable of
signing FDF files.

oInfo (optional) A Signaturelnfo Object containing the writable properties
of the signature.

nUI (optional) The type of dialog to show when signing. Values are:

0: Show no dialog.

1: Show a simplified dialog with no editable fields (fields can be
provided in oInfo).

2: Show a more elaborate dialog that includes editable fields for
reason, location and contact information.

The default is 0.

cUISignTitle (optional) The title to use for the sign dialog. This is only used if nUT is
non-zero.

cUISelectMsg (optional) A message to display when a user is required to select a
resource for signing, such as selecting a credential. It is used only
when nUI is non-zero.

Returns

trueif the signature was applied successfully, false otherwise.

Example
Open existing FDF data file and sign.

var eng = security.getHandler ("Adobe.PPKLite");
eng.login ("myPassword" ,"/c/test/Acme.pfx") ;
var myFDF = app.openFDF("/c/temp/myData.fdf");
if (!myFDF.isSigned) {
myFDF . signatureSign(eng, {}, 1, "Sign Embedded File FDF",

Acrobat JavaScript Scripting Reference 227

- Acrobat JavaScript Scripting Reference
FDF Methods

"Please select a Digital ID to use to sign your "
+ "embedded file FDF."

) ;

myFDF.save ("/c/temp/myData.fdf") ;

}i
signatureValidate

6.0 X)

Validate the signature of an FDF Object and return a Signaturelnfo Object specifying the
properties of the signature.

Parameters

oSig (optional) The security handler to be used to validate the signature. Can
be either a SecurityHandler Object or a generic object with the following
properties:

e oSecHd1r: The SecurityHandler Object to use to validate this
signature.

e bAltSecHdlr: A boolean. If true, an alternate security handler,
selected based on user preference settings, may be used to validate
the signature. The default is £alse, meaning that the security handler
returned by the signature’s handlerName property is used to validate
the signature. This parameter is not used if oSecHd1r is provided.

If oSig not supplied, the security handler returned by the signature’s

handlerName property is used to validate the signature.

bUI (optional) When true, allow Ul to be shown, if necessary, when validating
the data file. Ul may be used to select a validation handler if none is
specified.

Returns
A Signaturelnfo Object. The signature status is described in status property.

Example
fdf = app.openFDF ("/c/temp/myDoc.fdf") ;
eng = security.getHandler("Adobe.PPKLite");
if (fdf.isSigned)

{

var oSigInfo = fdf.signaturevValidate ({

0oSig: eng,

bUI: true
1
console.println("Signature Status: " + oSigInfo.status) ;
console.println("Description: " + oSigInfo.statusText) ;

228 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Field Object

} else {
console.println ("FDF not signed");
}

Field Object

The f£ield object represents an Acrobat form field (that is, a field created using the
Acrobat form tool or doc .addField). In the same manner that an author might want to
modify an existing field's properties like the border color or font, the Field object gives the
JavaScript user the ability to perform the same modifications.

Field Access from JavaScript

Before a field can be accessed, it must be “bound” to a JavaScript variable through a
method provided by the Doc Object method interface. More than one variable may be
bound to a field by modifying the field’s object properties or accessing its methods. This
affects all variables bound to that field.

var £ = this.getField("Total") ;

This example allows the script to now manipulate the form field Total by using the
variable £.

Fields can be arranged hierarchically within a document. For example, form fields can have
names like “FirstName” and “LastName”. These are called £1lat names, there is no
association between these fields. By changing the field names slightly, a hierarchy of fields
within the document can be created. For example, if "FirstName" and "LastName" are
changed to "Name.First” and “Name.Last’, a tree of fields is formed. The period (") separator
in Acrobat Forms is used to denote a hierarchy shift. The “Name” portion of these fields is
the parent, and “First” and “Last” are the children. There is no limit to the depth of a
hierarchy that can be constructed but it is important that the hierarchy remain
manageable. It is also important to clarify some terminology: the field “Name” is known as
an internal field (that is, it has no visible manifestation) and the fields “First” and “Last”
are terminal fields (and show up on the page).

A useful property about Acrobat Form fields is that fields that share the same name also
share the same value. Terminal fields can have different presentations of that data; they can
appear on different pages, be rotated differently, have a different font or background color,
and so on, but they have the same value. This means that if the value of one presentation of
a terminal field is modified, all others with the same name get updated automatically. We
refer to each presentation of a terminal field as a widget.

Individual widgets do not have names. Each individual widget is identified by index (0-
based) within its terminal field. The index is determined by the order in which the
individual widgets of this field were created (and is unaffected by tab-order). You can easily
determine what the index is for a specific widget by looking at the “Fields” panel in Acrobat.
It is the number that follows the ‘# sign in the field name shown (in Acrobat 6, the widget
index is only displayed if the field has more than one widget). You can double-click an entry

Acrobat JavaScript Scripting Reference 229

- Acrobat JavaScript Scripting Reference
Field Object

in the “Fields” panel to go to the corresponding widget in the document. Alternatively, if
you select a field in the document, the corresponding entry in the “Fields” panel is
highlighted.

Doc.getField () Extended to Widgets

A new notation is available when calling getField which can be used to retrieve the Field
object of one individual widget of a field. This new notation consists of appendinga
followed by the widget index to the field name passed. When this approach is used, the
fieldobjectreturned by getField encapsulates only one individual widget. You can
use the £ield objects returned this way in any place you would use a £ield object
returned by simply passing the unaltered field name. However, the set of nodes that are
affected may vary, as shown in the following table..

Field Object that Represents Field Object that Represents

Action All Widgets One Specific Widget

Get a widget property Gets property of widget # 0 Gets property of that widget

Set a widget property Sets property of all widgets that ~ Sets property of that widget
are children of that field?

Get afield property Gets property of that field Gets property of parent field

Set a field property Sets property of that field Sets property of parent field

a. Except for the rect property and the setFocus method. For these cases it applies to widget # 0.

The following example changes the rect property of the second radio button (the first
would have index 0) of the field "my radio".

var f = this.getField("my radio.l");
f.rect = [360, 677, 392, 646];

Field versus Widget Attributes

Some of the properties of the £ield object in JavaScript truly live at the field level, and
apply to all widgets that are children of that field. A good example is value. Other

230 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Field Properties

properties are, in fact, widget-specific. A good example is rect. The following table shows
which attributes live at the field level and which at the widget level.

Field Object Properties and Methods that
Affect Widget-Level Attributes

Field Object Properties and Methods that
Affect Field-Level Attributes

alignment, borderStyle, buttonAlignX,
buttonAlignY, buttonPosition,
buttonScaleHow, buttonScaleWhen, display,
fillColor, hidden, highlight, lineWidth,
print, rect, strokeColor, style,
textColor, textFont, textSize,
buttonGetCaption, buttonGetIcon,
buttonImportIcon, buttonSetCaption,
buttonSetIcon, checkThisBox?,
defaultIsChecked®, isBoxChecked?,

isDefaultChecked?®, setAction®, setFocus

calcOrderIndex, charLimit, comb,
currentValueIndices,defaultvValue,
doNotScroll, doNotSpellCheck, delay, doc,
editable, exportValues, fileSelect,
multiline, multipleSelection, name,
numItems, page, password, readonly,
required, submitName, type, userName,
value, valueAsString,clearItems,
browseForFileToSubmit, deleteItemAt,
getItemAt, insertItemAt, setAction®,
setItems, signatureInfo, signatureSign,
signaturevValidate

a. These methods take a widget index, nWwidget, as parameter. If you invoke these methods on a Field object "£"
that represents one specific widget, then the nWidget parameter is optional (and is ignored if passed), and the
method acts on the specific widget encapsulated by "£".

b. Some actions live at the field level, and some at the widget level. The former includes "Keystroke™,
"Validate", "Calculate" "Format" The latter includes "MouseUp" "MouseDown", "MouseEnter",

"MouseExit", "OnFocus", "OnBlur™".

Field Properties

alignment

©

Controls how the text is laid out within the text field. Values are:

left
center
right
Type: String Access: R/W
Example
var £ = this.getField("MyText");
f.alignment = "center";

Acrobat JavaScript Scripting Reference

Fields: text.

7

231

232

Acrobat JavaScript Scripting Reference
Field Properties

borderStyle

©

The border style for a field. Valid border styles are

solid
dashed
beveled
inset
underline

The border style determines how the border for the rectangle is drawn. The border object
is a static convenience constant that defines all the border styles of a field, as shown in the

following table:

Type Keyword Description

solid border.s Strokes the entire perimeter of the rectangle with
a solid line.

beveled border.b Equivalent to the solid style with an additional
beveled (pushed-out appearance) border
applied inside the solid border.

dashed border.d Strokes the perimeter with a dashed line

inset border.i Equivalent to the solid style with an additional
inset (pushed-in appearance) border applied
inside the solid border.

underline border.u Strokes the bottom portion of the rectangle’s
perimeter.

Type: String Access: R/W Fields: all.

Example

The following example illustrates how to set the border style of a field to solid:

var f = this.getField("MyField") ;

f .borderStyle

buttonAlignX

5.0

©

border.s; /* border.s evaluates to "solid" */

Controls how space is distributed from the left of the button face with respect to the icon. It
is expressed as a percentage between 0 and 100, inclusive. The default value is 50. If the

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Field Properties

icon is scaled anamorphically (which results in no space differences) then this property is
not used.

Type: Integer Access: R/W Fields: button
buttonAlignY
50 | ©

Controls how unused space is distributed from the bottom of the button face with respect
to theicon. Itis expressed as a percentage between 0 and 100 inclusive. The default value is
50. If the icon is scaled anamorphically (which results in no space differences) then this
property is not used.

Type: Integer Access: R/W Fields:button.

buttonFitBounds
60 | ©®

When true, the extent to which the icon may be scaled is set to the bounds of the button
field; the additional icon placement properties are still used to scale/position the icon
within the button face.

In previous versions of Acrobat, the width of the field border was always taken into
consideration when scaling an icon to fit a button face, even when no border color was
specified. Setting this property to true when a border color has been specified for the
button will cause an exception to be raised.

Type: Boolean Access: R/W Fields: button

buttonPosition

50 | ©

Controls how the text and the icon of the button are positioned with respect to each other
within the button face. The convenience position object defines all of the valid
alternatives:

Icon/Text Placement Keyword
Text Only position.textOnly
Icon Only position.iconOnly

Acrobat JavaScript Scripting Reference 233

- Acrobat JavaScript Scripting Reference
Field Properties

Icon/Text Placement Keyword

Icon top, Text bottom position.iconTextV

Text top, lcon bottom position.textIconV

Icon left, Text right position.iconTextH

Text left, Icon right position.textIconH

Text in Icon (overlaid) position.overlay

Type: Integer Access: R/W Fields:button.
buttonScaleHow

50 | ©

Controls how the icon is scaled (if necessary) to fit inside the button face. The convenience
scaleHow object defines all of the valid alternatives:

How is Icon Scaled Keyword
Proportionally scaleHow.proportional
Non-proportionally scaleHow.anamorphic
Type: Integer Access: R/W Fields:button.
buttonScaleWhen

50 | ©

Controls when an icon is scaled to fit inside the button face. The convenience scaleWhen
object defines all of the valid alternatives:

When is Icon Scaled Keyword
Always scaleWhen.always
Never scaleWhen.never
If icon is too big scaleWhen. tooBig
If icon is too small scaleWhen. tooSmall
Type: Integer Access: R/W Fields: button

234 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Field Properties

calcOrderindex

©

Changes the calculation order of fields in the document. When a computable text or
combobox field is added to a document, the field’s name is appended to the calculation
order array. The calculation order array determines the order fields are calculated in the
document. The calcOrderIndex property works similarly to the Calculate tab used by
the Acrobat Form tool.

Type: Integer Access: R/W Fields: combobox, text.

Example

var a = this.getField("newItem") ;
var b = this.getField("oldItem") ;
a.calcOrderIndex = b.calcOrderIndex + 1;

In this example, getField gets the "newltem" field that was added after "oldItem" field. It
then changes the calcOrderIndex of the "olditem" field so that it is calculated before
"newltem" field.

charLimit

©

Limits the number of characters that a user can type into a text field.
See also event. fieldFull.
Type: Integer Access: R/W Fields: text.

Example
Set a limit on the number of characters that can be typed into a field.

var £ = this.getField("myText") ;
f.charLimit = 20;

comb

60 | ©®

If set to true, the field background is drawn as series of boxes (one for each character in
the value of the field) and the each character of the content is drawn within those boxes.
The number of boxes drawn is determined from the £ield.charLimit property.

It applies only to text fields. The setter will also raise if any of the following field properties
are also setmultiline, password, and f£ileSelect. A side-effect of setting this
property is that the doNotScroll property is also set.

Acrobat JavaScript Scripting Reference 235

- Acrobat JavaScript Scripting Reference
Field Properties

Type: Boolean Access: R/W Fields: text.

Example

Create a comb field in the upper left corner of a newly created document.

var myDoc = app.newDoc () ; // create a blank doc
var Bbox = myDoc.getPageBox ("Crop") ; // get crop box
var inch = 72;

// add a text field at the top of the document
var £ = myDoc.addField("Name.Last", "text", O,
[inch, Bbox[1]-inch, 3*inch, Bbox[1]- inch - 14])
// add some attributes to this text field
f.strokeColor = color.black;
f.textColor = color.blue;

f.fillColor = ["RGB",1,0.66,0.75]

f.comb = true // declare this is a comb field

f.charLimit = 10; // Max number of characters
commitOnSelChange

60 | ©®

Controls whether a field value is committed after a selection change. When true, the field
value is committed immediately when the selection is made. When f£alse, the user can
change the selection multiple times without committing the field value; the value is
committed only when the field loses focus, that is, when the user clicks outside the field.

Type: Boolean Access: R/W Fields: combobox, 1istbox.

currentValuelndices

50 | ©

Reads and writes single or multiple values of a 1istbox or combobox.

Read

Returns the options-array indices of the strings that are the value of a 1istbox or
combobox field. These indices are 0-based. If the value of the field is a single string then it
returns an integer. Otherwise, it returns an array of integers sorted in ascending order. If the
current value of the field is not a member of the set of offered choices (as could happen in
the case of an editable combobox) it returns -1.

Write

Sets the value of a 1istbox or combobox. It accepts either a single integer, or an array of
integers, as an argument. To set a single string as the value, pass an integer which is the 0-

236 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Field Properties

based index of that string in the options array. Note that in the case of an editable
combobox, if the desired value is not a member of the set of offered choices, then you
must set the value instead. Except for this case, currentValueIndicesis the
preferred way to set the value of a 1istbox or combobox.

To set a multiple selection for a 1istbox that allows it, pass an array as argument to this
property, containing the indices (sorted in ascending order) of those strings in the options
array. This is the only way to invoke multiple selection for a 1istbox from JavaScript. The
ability for a 1istbox to support multiple section can be set through
multipleSelection.

Related Field methods and properties include numItems, getItemAt, insertItemAt,
deleteItemAt and setItems.

Type: Integer | Array Access: R/W Fields: combobox, 1istbox
Example (Read)

The script below is a mouse up action of a button. The script gets the current value of a list
box.

var f = this.getField("myList");
var a = f.currentValueIndices;

if (typeof a == "number") // a single selection
console.println("Selection: " + f.getItemAt (a, false));
else { // multiple selections

console.println("Selection:") ;
for (var i = 0; i < a.length; i ++)
console.println (" " + f.getItemAt (a[i], false));

}
Example (Write)

The following code, selects the second and fourth (0-based index values, 1 and 3,
respectively) in a listbox.

var £ = this.getField("myList");
f.currentvValueIndices = [1,3];

defaultStyle

6.0

This property defines the default style attributes for the form field. If the user clicks into an
empty field and begins entering text without changing properties using the property
toolbar, these are the properties that will be used. This property is a single Span Object
without a text property. Some of the properties in the default style span mirror the
properties of the field object. Changing these properties also modifies the
defaultStyle property for the field and vice versa.

Acrobat JavaScript Scripting Reference 237

- Acrobat JavaScript Scripting Reference
Field Properties

The following table details the properties of the field object that are also in the default style
and any differences between their values.

Field Properties defaultStyle (Span Properties) Description

alignment alignment The alignment property has the same
values for both the default style and the field
object.
textFont fontFamily The value of this field property is a complete
fontStyle font name which represents the font family,

weight and style. In the default style property
each property is represented separately. If an
exact match for the font properties specified
in the default style cannot be found a similar
font will be used or synthesized.

fontWeight

textColor textColor The textColor property has the same
values for both the default style and the field
objec.

textSize textSize The textSize property has the same values
for both the default style and the field object.

Notes: When a field is empty, defaultStyleis the style used for newly entered text. If a
field already contains text when when the defaultStyleis changed the text will
not pick up any changes to defaultStyle; newly entered text will use the
attributes of the text it is inserted into (or specified with the toolbar).

When pasting rich text into a field any unspecified attributes in the pasted rich text
will be filled with those from the defaultStyle.

Superscript and Subscript are ignored in the defaultStyle.
Type: Span Object Access: R/W Fields: rich text.

Example
Change the default style for a text field.
var style = this.getField("Textl") .defaultStyle;

style.textColor = color.red;
style.textSize = 18;

// if Courier Std is not found on the user’s system, use a monospace
style.fontFamily = ["Courier Std", "monospace"];

this.getField("Textl1l") .defaultStyle = style;

238 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Field Properties

defaultValue
)

Exposes the default value of a field. This is the value that the field is set to when the form is
reset. For comboboxes and 1istboxes either an export or a user value can be used to
set the default. In the case of a conflict (for example, the field has an export value and a user
value with the same string but these apply to different items in the list of choices), the
export value is matched against first.

Type: String Access: R/W Fields: all except but ton,
signature
Example
var £ = this.getField("Name") ;
f.defaultValue = "Enter your name here.";
doNotScroll

50 | ©

When true, the text field does not scroll and the user, therefore, is limited by the
rectangular region designed for the field. Setting this property to true or false
corresponds to checking or unchecking the “Scroll long text” field in the Options tab of the
field.

Type: Boolean Access: R/W Fields: text.
doNotSpellCheck
50 | ©

When true, spell checking is not performed on this editable text field. Setting this
property to true or false corresponds to unchecking or checking the "Check spelling"
attribute in the Options tab of the Field Properties dialog.

Type: Boolean Access: R/W Fields: combobox (editable), text.

delay

Delays the redrawing of a field's appearance. It is generally used to buffer a series of
changes to the properties of the field before requesting that the field regenerate its
appearance. Setting the property to true forces the field to wait until delay is set to
false. The update of its appearance then takes place, redrawing the field with its latest
settings.

Acrobat JavaScript Scripting Reference 239

- Acrobat JavaScript Scripting Reference
Field Properties

There is a corresponding doc . delay flag if changes are being made to many fields at
once.

Type: Boolean Access: R/IW Fields: all.

Example

// Get the myCheckBox field

var f = this.getField ("myCheckBox") ;

// set the delay and change the fields properties
// to beveled edge and medium thickness line.
f.delay = true;

f.borderStyle = border.b;

f.strokeWidth = 2;

f.delay = false; // force the changes now

display
40 | ®

Controls whether the field is hidden or visible on screen and in print. Values are:

Effect Keyword

Field is visible on screen and in print display.visible
Field is hidden on screen and in print display.hidden
Field is visible on screen but does not print display.noPrint
Field is hidden on screen but prints display.noView

This property supersedes the older hidden and print properties.

Type: Integer Access: R/W Fields: all.

Example

// Set the display property
var f = getField("myField");
f.display = display.noPrint;

// Test whether field is hidden on screen and in print
if (f.display == display.hidden) console.println("hidden") ;

doc

Returns the Doc Object of the document to which the field belongs.

Type: object Access: R/W Fields: all.

240 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Field Properties

editable

©

Controls whether a combobox is editable. When true, the user can type in a selection.
When false, the user must choose one of the provided selections.

Type: Boolean Access: R/W Fields: combobox.

Example

var £ = this.getField ("myComboBox") ;
f.editable = true;

exportValues

50 | ©

The array of export values defined for the field. For radio button fields, this is necessary to
make the field work properly as a group with the one button checked at any given time
giving its value to the field as a whole. For checkbox fields, unless an export value is
specified, the default used when the field is checked is "Yes" (or the corresponding localized
string). When it is unchecked, its value is "Off" (this is also true for a radio button field when
none of its buttons are checked). This property contains an array of strings with as many
elements as there are annotations in the field. The elements of the array are mapped to the
individual annotations comprising the field in the order of creation (unaffected by tab-
order).

Type: Array Access: R/W Fields: checkbox, radicbutton

Example

var d = 40;

var f = this.addField("myRadio", "radiobutton",0, [200, 510, 210, 500]);
this.addField ("myRadio", "radiobutton",0, [200+d, 510-d, 210+d, 500-d]);
this.addField ("myRadio", "radiobutton", 0, [200, 510-2*d, 210, 500-2*d]);

this.addField ("myRadio", "radiobutton", 0, [200-d, 510-d, 210-d, 500-d]);

f.strokeColor = color.black;

// now give each radio field an export value

f.exportvalues = ["North", "East", "South", "West"];

fileSelect

50 | O ®

When true, sets the file-select flag in the Options tab of the text field (“Field is Used for
File Selection”). This indicates that the value of the field represents a pathname of a file
whose contents may be submitted with the form.

Acrobat JavaScript Scripting Reference 241

- Acrobat JavaScript Scripting Reference
Field Properties

The pathname may be entered directly into the field by the user, or the user can browse for
the file. (See the browseForFileToSubmit.)

Note: The file select flag is mutually exclusive with the multiline, charLimit,
password, and defaultValue. Also, on the Macintosh platform, when setting
the file select flag, the field gets treated as read-only; hence, the user must browse
for the file to enter into the field. (See the browseForFileToSubmit.)

NOTE: (Security@): This property can only be set during batch, menu, or console events.
See the Event Object for a discussion of Acrobat JavaScript events.

Type: Boolean Access: R/W Fields: text.

fillColor

©

Specifies the background color for a field. The background color is used to fill the rectangle
of the field. Values are defined by using transparent, gray, RGB or CMYK color. See
Color Arrays forinformation on defining color arrays and how values are used with this
property.

In older versions of this specification, this property was named bgColor. The use of
bgColor is now discouraged but for backwards compatibility is still valid.

Type: Array Access: R/W Fields: all.

Example

hidden

var £ = this.getField("myField") ;

if (color.equal(f.fillColor, color.red))
f.fillColor = color.blue;

else
f.fillColor = color.yellow;

® | ©

Controls whether the field is hidden or visible to the user. If the value is falsethe field is
visible, true the field is invisible. The default value for hiddenis false.

See also the display which supersedes this property in later versions.

Type: Boolean Access: R/W Fields: all.

Example

242

var £ = this.getField("myField") ;
f.hidden = true; // Set the field to hidden

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Field Properties

highlight
()

Defines how a button reacts when a user clicks it. The four highlight modes supported are:

none: No visual indication that the button has been clicked.

invert: Click causes the region encompassing the button’s rectangle to invert
momentarily.

push: Click displays the down face for the button (if any) momentarily.
outline: Click causes the border of the rectangle to invert momentarily.

The convenience highlight object defines each state, as follows:

Type Keyword
none highlight.n
invert highlight.i
push highlight.p
outline highlight.o
Type: String Access: R/W Fields:button
Example

The following example sets the highlight property of a button to "invert".

// set the highlight mode on button to invert
var f = this.getField ("myButton") ;
f.highlight = highlight.i;

lineWidth
)

Specifies the thickness of the border when stroking the perimeter of a field’s rectangle. If
the stroke color is transparent, this parameter has no effect except in the case of a beveled
border. Values are:

0: none

1: thin

2: medium
3:thick

In older versions of this specification, this property was borderWidth The use of
borderWidthis now discouraged but for backwards compatibility is still valid.

Acrobat JavaScript Scripting Reference 243

- Acrobat JavaScript Scripting Reference
Field Properties

Type: Integer Access: R/W Fields: all.

Example

// Change the border width of the Text Box to medium thickness
f.lineWidth = 2

The default value for 1ineWidthis 1 (thin). Any integer value can be used; however,
values beyond 5 may distort the field’s appearance.

multiline

©

Controls how the text is wrapped within the field. When £alse, the default, the text field
can be a single line only. When true, multiple lines are allowed and wrap to field
boundaries.

Type: Boolean Access: R/W Fields: text.

Example

See the Example 1 following doc.getField.

multipleSelection

50 | ©

If true, indicates that a listbox allows multiple selection of the items. See also type,
value, and currentValueIndices.

Type: Boolean Access: R/W Fields: 1istbox
name
Allows you to access the fully qualified field name of the field as a string object.
Beginning with Acrobat 6.0, if the Field Object represents one individual widget, then the
returned name includes an appended * followed by the widget index.
Type: String Access: R Fields: all.
Example

var f = this.getField("myField") ;

// displays "myField" in console window
console.println (f.name) ;

244 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

Field Properties
numlitems
The number of items in a combobox or 1istbox.
Type: Integer Access: R Fields: combobox, 1istbox

Example

var £ = this.getField("myList");
console.println("There are " + f.numItems + " in this listbox") ;

Face names and values of a combobox or listbox can be access through the getItemAt
method. See that method for an additional example of numI tems.

page

5.0

Returns the page number or an array of page numbers of a field. If the field has only one
appearance in the document, the page property will return an integer representing the (0
based) page number of the page on which the field appears. If the field has multiple
appearances, it will return an array of integers, each member of which is a (0 based) page
number of an appearance of the field. The order in which the page numbers appear in the
array is determined by the order in which the individual widgets of this field were created
(and is unaffected by tab-order). If an appearance of the field is on a hidden template page,
page returns a value of -1 for that appearance.

Type: Integer | Array Access: R Fields: all.

Example
var f = this.getField("myField") ;
if (typeof f.page == "number")
console.println("This field only occurs once on page " + f.page);
else
console.println("This field occurs " + f.page.length + " times);

password

©

Causes the field to display asterisks for the data entered into the field. Upon submission, the
actual data entered is sent. Fields that have the password attribute set will not have the
data in the field saved when the document is saved to disk.

Type: Boolean Access: R/W Fields: text.

Acrobat JavaScript Scripting Reference 245

- Acrobat JavaScript Scripting Reference
Field Properties

print
® |©

Determines whether a given field prints or not. Set the print property to true to allow
the field to appear when the user prints the document, set it to f£alse to prevent printing.
This property can be used to hide control buttons and other fields that are not useful on the
printed page.

This property has been superseded by the display and its use is discouraged.
Type: Boolean Access: R/IW Fields: all.

Example

var f = this.getField("myField") ;
f.print = false;

radiosInUnison

60 | ©®

When false, even if a group of radio buttons have the same name and export value, they
behave in a mutually exclusive fashion, like HTML radio buttons. The default for new radio
buttons is false.

When true, if a group of radio buttons have the same name and export value, they turn on
and off in unison, as in Acrobat 4.

Type: Boolean Access: R/W Fields: radiobutton

readonly

©

Sets or gets the read-only characteristic of a field. If a field is read-only, the user can see the
field but cannot change it.

Type: Boolean Access: R/W Fields: all.

rect

©

Sets or gets an array of four numbers in Rotated User Space that specifies the size and
placement of the form field. These four numbers are the coordinates of the bounding

246 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Field Properties

rectangle and are listed in the following order: upper-left x, upper-left y, lower-right x and
lower-right y.

NoTe: Annot Object also has a rect, but: 1) the coordinates are not in Rotated User
Space, and 2) they are in different order than in £ield.rect.

Type: Array Access: R/W Fields: all.
Example 1

Lay out a 2-inch-wide text field just to the right of the field "myText".

var £ = this.getField("myText"); // get the field object
var myRect = f.rect; // and get it’s rectangle

// make needed coordinate adjustments for new field

myRect [0] = f.rect[2]; // the ulx for new = lrx for old
myRect [2] += 2 * 72; // move over two inches for lry

f = this.addField("myNextText", "text", this.pageNum, myRect) ;
f.strokeColor = color.black;

Example 2

Move a button field that already exists over 10 points to the right.

var b = this.getField ("myButton") ;
var aRect = b.rect; // make a copy of b.rect

aRect [0] += 10; // increment first x-coordinate by 10
aRect [2] += 10; // increment second x-coordinate by 10
b.rect = aRect; // update the value of b.rect

required

©

Sets or gets the required characteristic of a field. When true, the field’s value must be non-
null when the user clicks a submit button that causes the value of the field to be posted. If
the field value is null, the user receives a warning message and the submit does not

occur.
Type: Boolean Access: R/W Fields: all except button

Example

var f = this.getField("myField") ;
f.required = true;

Acrobat JavaScript Scripting Reference 247

- Acrobat JavaScript Scripting Reference
Field Properties

richText

60 | ®

Get and sets the rich text property of the text field. If true, the field will allow rich text
formatting. The default is false.
Type: Boolean Access: R/W Fields: text.

Related objects and properties are the Span Object, field.richvValue,
field.defaultStyle, event.richValue, event.richChange,
event.richChangeEx, and annot.richContents.

Example 1

Get a field object, and set it for rich text formatting.

var £ = this.getField("Textl") ;
f.richText = true;

Example 2

Count the number of rich text fields in the document.

0; i < this.numFields; i++)

var fname = this.getNthFieldName (i) ;
var £ = this.getField (fname) ;
if (f.type == "text" && f.richText) count++

}

console.println("There are a total of "+ count + " rich text fields.");

richValue

6.0

This property gets the text contents and formatting of a rich text field. For field types other
than rich text this property is undefined. The rich text contents are represented as an array
of Span Objects containing the text contents and formatting of the field.

Type: Array of Span ObjectsAccess: R/W Fields: rich text.

Related objects and properties are the Span Object, field.richText,
field.defaultStyle, event.richValue, event.richChange,
event.richChangeEx, and annot.richContents.

Example 1

This example turns all bold text into red underlined text.

var £ = this.getField("Textl");
var spans = f.richvalue;

248

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Field Properties

for (var i = 0; i < spans.length; i++)

{
if (spans[i] .fontWeight >= 700)

{
spans [i] . textColor
spans [i] .underline

color.red;
true;

}
}

f.richvalue = spans;

Example 2

This example creates a text field, marks it for rich text formatting, and inserts rich text.

var myDoc = app.newDoc () ; // create a blank doc
var Bbox = myDoc.getPageBox ("Crop") ; // get crop box
var inch = 72;

// add a text field at the top of the document
var £ = myDoc.addField("Textl", "text", O,

[72, Bbox[1]-inch, Bbox[2]-inch, Bbox[1]-2*inch])
// add some attributes to this text field
f.strokeColor = color.black;
f.richText = true; // rich text
f.multiline = true; // multiline

// now build up an array of Span Objects
var spans = new Array () ;

spans [0] = new Object() ;

spans [0] .text = "Attention:\r";
spans [0] .textColor = color.blue;
spans [0] .textSize = 18;

spans [1] = new Object() ;
spans [1] .text = "Adobe Acrobat 6.0\r";
spans [1] .textColor = color.red;
spans [1] .textSize = 20;
spans [1] .alignment = "center";

spans [2] = new Object() ;
spans [2] .text = "will soon be here!";
spans [2] .textColor = color.green;
spans [2] . fontStyle = "italic";
spans [2] .underline = true;
spans [2] .alignment = "right";

// now give the rich field a rich value
f.richvalue = spans;

Acrobat JavaScript Scripting Reference 249

- Acrobat JavaScript Scripting Reference
Field Properties

rotation

60 | ® o

Determines the rotation of a widget in 90 degree counter-clockwise increments. Valid
values are 0, 90, 180, 270.

Type: Integer

strokeColor

©

Access: R/W Fields: all.

Specifies the stroke color for a field which is used to stroke the rectangle of the field with a
line as large as the line width. Values are defined by using transparent, gray, RGB or
CMYK color. See Color Arrays for information on defining color arrays and how values are
used with this property.

In older versions of this specification, this property was borderColor. The use of
borderColor is now discouraged but for backwards compatibility is still valid.

Type: Array

style

©

Access: R/W Fields: all.

Allows the user to set the glyph style of a checkbox or radiobutton. The glyph style is
the graphic used to indicate that the item has been selected.

The style values are associated wtih keywords as follows:

Style Keyword

check style.ch
Cross style.cr
diamond style.di
circle style.ci
star style.st
square style.sqg

Type: String Access: R/W Fields: checkbox, radicbutton

250

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Field Properties

Example

The following example illustrates the use of this property and the style object:

var f = this.getField ("myCheckbox") ;
f.style = style.ci;

submitName

50 | ©

If nonempty, used during form submission instead of name. Only applicable if submitting
in HTML format (that is, URLencoded).

Type: String Access: R/W Fields: all.

textColor

©

Determines the foreground color of a field. It represents the text color for text, button,
or listboxfields and the check color for checkbox or radio buttonfields. Values are
defined the same as the £111Color. See Color Arrays for information on defining color
arrays and how values are set and used with this property.

In older versions of this specification, this property was £gColor. The use of £gColor is
now discouraged but for backwards compatibility is still valid.

NoTe: An exception is thrown if a transparent color space is used to set textColor.

Type: Array Access: R/W Fields: all.

Example

var f = this.getField("myField") ;
f.textColor = color.red;

textFont

©

Determines the font that is used when laying out text in a text £ield, combobox,
listboxorbutton. Valid fonts are defined as properties of the £ont object as follows:

Text Font Keyword

Times-Roman font.Times

Acrobat JavaScript Scripting Reference 251

- Acrobat JavaScript Scripting Reference
Field Properties

Text Font Keyword
Times-Bold font.TimesB
Times-ltalic font.TimesI
Times-Boldltalic font.TimesBI
Helvetica font.Helv
Helvetica-Bold font.HelvB
Helvetica-Oblique font.HelvI
Helvetica-BoldOblique font.HelvBI
Courier font.Cour
Courier-Bold font.CourB
Courier-Oblique font.CourI
Courier-BoldOblique font.CourBI
Symbol font.Symbol
ZapfDingbats font.ZapfD

Beginning with Acrobat 5.0, an arbitrary font can be used when laying out a text field,
combobox, 1istbox or button by setting the value of textFont to a string that
represents the PostScript name of the font.

Note: Use of arbitrary fonts as opposed to those listed in the font object creates
compatibility problems with older versions of the Viewer.

Type: String

Example

Access: R/W

Fields: but ton, combobox,

listbox, text.

The following example illustrates the use of this property and the font object.

// set the font of "myField" to Helvetica
var f = this.getField("myField") ;

f.textFont = font.Helv;

Example (Acrobat 5.0)

// set the font of "myField" to Viva-Regular
var f = this.getField("myField") ;
f.textFont = "Viva-Regular";

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Field Properties

textSize

©

Controls the text size (in points) to be used in all controls. In checkbox and
radiobutton fields, the text size determines the size of the check. Valid text sizes range
from 0 to 32767 inclusive. A text size of zero means to use the largest point size that will
allow all text data to fit in the field’s rectangle.

Type: Number Access: R/W Fields: all.

Example

// set the text size of myField to 28 point
this.getField ("myField") .textSize = 28;

type
Returns the type of the field as a string. Valid types are:
button
checkbox
combobox
listbox
radiobutton
signature
text
Type: String Access: R Fields: all.
userName
Gets or sets the user name (short description string) of the field. The user name is intended
to be used as tooltip text whenever the mouse cursor enters a field. It can also be used as a
user-friendly name when generating error messages instead of the field name.
Type: String Access: R/W Fields: all.
value

©

Gets the value of the field data that the user has entered. Depending on the type of the

field, may be a String, Date, or Number. Typically, the value is used to create calculated
fields.

Acrobat JavaScript Scripting Reference

253

- Acrobat JavaScript Scripting Reference
Field Methods

Beginning with Acrobat 6.0, if a field contains rich text formatting, modifying this property
will discard the formatting and regenerate the field value and appearance using the
defaultsStyle and plain text value. To modify the field value and maintain formatting
use the richValue property.

Notes: For signature fields, if the field has been signed then a non-null string is
returned as the value.

For Acrobat 5.0 or later, if the field is a 1istbox that accepts multiple selection (see
multipleSelection), you can pass an array to set the value of the field, and
value returns an array for a 1istbox with multiple values currently selected.

The currentValueIndices of a listbox that has multiple selections is the
preferred and most efficient way to get and set the value of this type of field.

See also valueAsString, and the Event Object type.

Type: various Access: R/W Fields: all except button

Example

In this example, the value of the field being calculated is set to the sum of the "oil" and
"filter" fields and multiplied by the state sales tax.

var oil = this.getField("0Oil");
var filter = this.getField("Filter") ;
event.value = (oil.value + filter.value) * 1.0825;

valueAsString

50 | ©

Returns the value of a field as a JavaScript string.

This differs from value, which attempts to convert the contents of a field contents to an
accepted format. For example, for a field with a value of "020", value returns the integer
20, while valueAsString returns the string "020".

Type: String Access: R Fields: all except but ton.

Field Methods

browseForFileToSubmit

50 | ©

When invoked on a text field for which the £ileSelect flag is set (checked), opens a
standard file-selection dialog. The path entered through the dialog is automatically
assigned as the value of the text field.

254 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
Field Methods

If invoked on a text field in which the £ileSelect flagis clear (unchecked), an exception
is thrown.

Parameter

None

Returns

Nothing

Example

The following code references a text field with the file select flag checked. This is a mouse
up action of a button field.

var f = this.getField("resumeField") ;
f .browseForFileToSubmit () ;

buttonGetCaption

5.0

Gets the caption associated with a button.

Parameter
nFace (optional) If specified, gets a caption of the given type:
0: (default) normal caption
1: down caption
2: rollover caption
Returns

The caption string associated with the button.

Example

This example places pointing arrows to the left and right of the caption on a button field
with icon and text.

// a mouse enter event
event .target .buttonSetCaption("=> "+ event.target.buttonGetCaption ()

+" <=1 ;

// a mouse exit event

var str = event.target.buttonGetCaption() ;
str = str.replace(/=> | <=/g, "");

event . target .buttonSetCaption (str) ;

The same effect can be created by having the same icon for rollover, and have the same
text, with the arrows inserted, for the rollover caption. This approach would be slower and

Acrobat JavaScript Scripting Reference 255

- Acrobat JavaScript Scripting Reference
Field Methods

cause the icon to flicker. The above code gives a very fast and smooth rollover effect
because only the caption is changed, not the icon.

buttonGetlcon

5.0

Gets the Icon Generic Object of a specified type associated with a button.

Parameter
nFace (optional) If specified, gets an icon of the given type:
0: (default) normal icon
1: down icon
2:rollover icon
Returns

The Icon Generic Object.

Example

// Swap two button icons.

var £ = this.getField("Buttonl") ;
var g = this.getField("Button2") ;
var temp = f.buttonGetIcon() ;
f.buttonSetIcon (g.buttonGetIcon()) ;
g.buttonSetIcon (temp) ;

See also buttonSetIcon and buttonImportIcon.

buttonimporticon

4.0 (X

Imports the appearance of a button from another PDF file. If neither of the optional
parameters are passed, the method prompts the user to select a file available on the

256 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
Field Methods

system. See also buttonGetIcon, buttonSetIcon, addIcon, getIcon,
importIcon, and removeIcon.

Parameter

cPath (optional, version 5.0) The device-independent pathname for the file.
See Section 3.10.1 of the PDF Reference for a description of the
device-independent pathname format.
Beginning with version 6.0, Acrobat will first attempt to open cPath
as a PDF. On failure, Acrobat will try to convert cPath to PDF from
one of the known graphics formats (BMP, GIF, JPEG, PCX, PNG, TIFF)
and then import the converted file as a button icon.

nPage (optional, version 5.0) The 0-based page number from the file to turn
into an icon. The default is 0.

Returns
An integer, as follows:

1: The user cancelled the dialog

0: No error

-1: The selected file couldn’t be opened
-2: The selected page was invalid

Example (Acrobat 5.0)

It is assumed that we are connected to an employee information database. We
communicate with the database using the ADBC Object and related objects. An employee’s
record is requested and three columns are utilized, FirstName, SecondName and Picture. The
Picture column, from the database, contains a device-independent path to the employee’s
picture, stored in PDF format. The script might look like this:

var f = this.getField("myPicture");
f.buttonSetCaption (row.FirstName.value + " " + row.LastName.value) ;
if (f.buttonImportIcon (row.Picture.value) != 0)

f.buttonImportIcon ("/F/employee/pdfs/NoPicture.pdf") ;

The button field "myPicture" has been set to display both icon and caption. The employee’s
first and last names are concatenated to form the caption for the picture. Note that if there
is an error in retrieving the icon, a substitute icon could be imported.

buttonSetCaption
50 | ©

Sets the caption associated with a button. See buttonAlignX, buttonAligny, and so
on for details on how the icon and caption are placed on the button face.

Acrobat JavaScript Scripting Reference 257

- Acrobat JavaScript Scripting Reference
Field Methods

Parameter
cCaption The caption associated with the button.
nFace (optional) If specified, sets a caption of the given type:
0: (default) normal caption
1: down caption
2: rollover caption
Returns
Nothing
Example

var f = this.getField ("myButton") ;
f.buttonSetCaption("Hello") ;

buttonSeticon

50 | ©®

Sets the icon associated with a button. See buttonScaleHow, buttonScaleWhen, and
so on for details on how the icon is rendered on the button face. See also

buttonGetIcon.
Parameter
oIcon The Icon Generic Object associated with the button.
nFace (optional) If specified, sets an icon of the given type:
0: (default) normal icon
1: down icon
2: rollover icon
Returns
Nothing
Example

This example takes every named icon in the document and creates a listbox using the
names. Selecting an item in the listbox sets the icon with that name as the button face of
the field "myPictures". What follows is the mouse up action of the button field "myButton".

var £ = this.getField("myButton")

var aRect = f.rect;

aRect [0] = f.rect[2]; // place listbox relative to the
aRect [2] = f.rect[2] + 144; // position of "myButton"

var mylIcons = new Array();

258

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Field Methods

var 1 = addField("myIconList", "combobox", 0, aRect);
1l.textSize = 14;
1.strokeColor = color.black;
for (var 1 = 0; 1 < this.icons.length; i++)
myIcons[i] = this.icons[i] .name;
1.setItems (myIcons) ;
1.setAction ("Keystroke",
'if (levent.willCommit) {\r\t'
+ 'var £ = this.getField("myPictures") ;\r\t'
+ 'var i1 = this.getIcon(event.change) ;\r\t'
+ 'f.buttonSetIcon (i) ;\r'
+ '}
The named icons themselves can be imported into the document through an interactive
scheme, such as the example given in addIcon or through a batch sequence.

See also buttonGetCaption for a more extensive example.

checkThisBox

5.0

Checks or unchecks the specified widget. Only checkboxes can be unchecked. A
radiobutton cannot be unchecked using this method, but if its default state is
unchecked (see defaul tIsChecked) it can be reset to the unchecked state using
doc.resetForm

Note: Fora set of radiobuttons that do not have duplicate export values, you can set
the value to the export value of the individual widget that should be checked (or
pass an empty string if none should be).

Parameters
nWidget The 0-based index of an individual checkbox or radiobutton
widget for this field. The index is determined by the order in which
the individual widgets of this field were created (and is unaffected by
tab-order).
Every entry in the Fields panel has a suffix giving this index; for
example, MyField #0.
bCheckIt (optional) Whether the widget should be checked. The default is
true.
Returns
Nothing
Example

// check the box "ChkBox"
var £ = this.getField("ChkBox") ;

Acrobat JavaScript Scripting Reference 259

260

Acrobat JavaScript Scripting Reference
Field Methods

f.checkThisBox (0, true) ;

clearltems

©

Clears all the values in a 1istbox or combobox.

Related methods and properties include numItems, getItemAt, deleteItemAt,

currentValuelIndices, insertItemAt and setItems.

Parameters

None

Returns

Nothing

Example

Clear the field “myList.”

var £ = this.getField("myList");
f.clearItems() ;

defaultlsChecked

5.0

Sets the specified widget to be checked or unchecked by default.

NoTe: For a set of radio buttons that do not have duplicate export values, you can set the
defaultValue to the export value of the individual widget that should be
checked by default (or pass an empty string if none should be).

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Field Methods

Parameters

nWidget The 0-based index of an individual radiocbutton or
checkbox widget for this field. The index is determined by
the order in which the individual widgets of this field were
created (and is unaffected by tab-order).

Every entry in the Fields panel has a suffix giving this index
(for example, MyField #0).

bIsDefaultChecked (optional) When true (the default) the widget should be
checked by default (for example, when the field gets reset).
When false, it should be unchecked by default.

Returns

true on success.

Example
Change the default of "ChkBox" to checked.

var f = this.getField("ChkBox") ;
f.defaultIsChecked (0, true) ;
this.resetForm(["ChkBox"]) ;

deleteltemAt
40 | ©

Deletes an item in a combobox or a 1istbox.

Fora 1istbox, if the current selection is deleted the field no longer has a current
selection. Having no current selection can an lead to unexpected behavior by this method
if is again invoked without parameters on this same field; there is no current selection to
delete. Itisimportant, therefore, to make a new selection so that this method will behave as
documented. A new selection can be made by using the currentValueIndices.

Parameters
nIdx (optional) The 0-based index of the item in the list to delete. If not
specified, the currently selected item is deleted.
Returns
Nothing
Example
var a = this.getField("MyListBox") ;
a.deleteItemAt () ; // delete current item, and...
a.currentValueIndices = 0; // select top item in list

Acrobat JavaScript Scripting Reference 261

- Acrobat JavaScript Scripting Reference
Field Methods

getArray

Performs field calculations in tables where a parent field value is the sum of all of its
children.

Parameters
None
Returns
An array of terminal child fields (that is, fields that can have a value) for a parent field.

Example
// £ has 3 children: f£.v1, f£.v2, f£.v3

var £ = this.getField("f");
var a = f.getArray() ;
var v = 0.0;

for (j =0; j < a.length; j++)
v += al[j] .value;
// v contains the sum of all the children of field "f"

getitemAt

Gets the internal value of an item in a combobox or a 1istbox.

The number of items in a list can be obtained from field.numItems. See also
insertItemAt, deleteItemAt, clearItems, currentValueIndices and

setItems.
Parameters
nIdx The 0-based index of the item in the list to obtain, or -1 for the last
item in the list.
bExportValue (optional, version 5.0) Whether to return an export value.

e When true, (the default) if the requested item has an export
value, returns the export value. If there is no export value,
returns the item name.

e When false, the method returns the item name.

Returns

The export value or name of the specified item.

Example

In the two examples that follow, assume there are three items on "myList": "First", with an
export value of 1; "Second", with an export value of 2; and "Third" with no export value.

// returns value of first item in list, which is 1
var £ = this.getField("myList") ;

262 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Field Methods

var v = f.getItemAt (0);
The following example illustrates the use of the second optional parameter.

for (var i=0; 1 < f.numItems; i++)
console.println(f.getItemAt (i,true) + ": " +
f.getItemAt (i,false));

The output to the console reads:

1: First
2: Second
Third: Third

Thus, by putting the second parameter to £alse the item name (face value) can be
obtained, even when there is an export value.

getLock

6.0

Gets a Lock Object, a generic object that contains the lock properties of a signature
field.

See also setLock of the Field Object.

Parameters

None

Returns
The Lock Object for the field.

insertltemAt

©

Inserts a new item into a combobox or a 1istbox.

Related methods and properties include numItems, getItemAt, deleteItemAt,
clearItems, currentValueIndices and setItems.

Acrobat JavaScript Scripting Reference 263

- Acrobat JavaScript Scripting Reference
Field Methods

Parameters
cName The item name that will appear in the form.
cExport (optional) The export value of the field when this item is selected. If
not provided, the cName is used as the export value.
nIdx (optional) The index in the list at which to insert the item. If O (the
default), the new item is inserted at the top of the list. If -1, the new
item is inserted at the end of the list.
Returns
Nothing
Example
var 1 = this.getField("myList");
1l.insertItemAt ("sam", "s", 0); /* inserts sam to top of list 1 */
isBoxChecked
5.0

Determines whether the specified widget is checked.

Note: Fora set of radiobuttons that do not have duplicate export values, you can get
the value, which is equal to the export value of the individual widget that is
currently checked (or returns an empty string, if none is).

Parameters

nWidget The 0-based index of an individual radiobutton or checkbox

widget for this field. The index is determined by the order in which
the individual widgets of this field were created (and is unaffected by
tab-order).
Every entry in the Fields panel has a suffix giving this index, for
example MyField #0.

Returns

trueif the specified widget is currently checked, f£alse otherwise.
Example

var £ = this.getField("ChkBox") ;
if (f£.isBoxChecked (0))

app.alert ("The Box is Checked") ;
else

app.alert ("The Box is not Checked");

264

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Field Methods

isDefaultChecked

5.0

Determines whether the specified widget is checked by default (for example,when the field
gets reset).

Note: For a set of radio buttons that do not have duplicate export values, you can get the
defaultValue, which is equal to the export value of the individual widget that is
checked by default (or returns an empty string, if none is).

Parameters

nWidget The 0-based index of an individual radiobutton or checkbox
widget for this field. The index is determined by the order in which
the individual widgets of this field were created (and is unaffected by
tab-order).

Every entry in the Fields panel has a suffix giving this index, for
example MyField #0.

Returns
trueif the specified widget is checked by default, false otherwise.

Example

var £ = this.getField("ChkBox") ;
if (f.isDefaultChecked(0))

app.alert ("The Default: Checked");
else

app.alert ("The Default: Unchecked") ;

setAction

50 | © (X

Sets the JavaScript action of the field for a given trigger. See also bookmark. setAction,
doc.setAction, doc.addScript, doc.setPageAction.

Acrobat JavaScript Scripting Reference 265

- Acrobat JavaScript Scripting Reference
Field Methods

Parameters

cTrigger A string that sets the trigger for the action. Values are:

MouseUp
MouseDown
MouseEnter
MouseExit
OnFocus
OnBlur
Keystroke
Validate
Calculate
Format

Fora listbox, use the Keystroke trigger for the Selection Change
event.

cScript The JavaScript code to be executed when the trigger is activated.

Returns

Nothing

Example

var £ = this.addField("actionField", "button", 0 , [20, 100, 100, 20]1);
.setAction ("MouseUp", "app.beep(0);");

.fillColor = color.ltGray;

.buttonSetCaption ("Beep") ;

.borderStyle = border.b;
.lineWidth = 3;
.strokeColor = color.red;
.highlight = highlight.p;

Fh th Hh Fh Fh Hh Hh

See also buttonSetIcon.

setFocus

4.05

Sets the keyboard focus to this field. This can involve changing the page that the user is
currently on or causing the view to scroll to a new position in the document. This method
automatically brings the document that the field resides in to the front, if it is not already
there.

See also the bringToFront.

Parameters

None

Returns

Nothing

266 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Field Methods

Example

Search for a certain open doc, then focus in on the field of interest. This will only work on
documents with disclosed set to true

var d = app.activeDocs;
for (var 1 = 0; i < d.length; i++) {
if (d[i].info.Title == "Response Document") {
d[i] .getField("name") .value="Enter your name here: "
// also brings the doc to front.
d[i] .getField("name") .setFocus () ;
break;

setltems

40 | ©

Sets the list of items for a combobox or a 1istbox.

Related methods and properties include numItems, getItemAt, deleteItemAt,
currentValueIndices and clearItems.

Parameters

OArray An array in which each element is either an object convertible to a string or
another array.
e For an element that can be converted to a string, the user and export
values for the list item are equal to the string.
e For an element that is an array, the array must have two sub-elements
convertible to strings, where the first is the user value, and the second is
the export value.

Returns
Nothing

Examples

var 1 = this.getField("ListBox") ;
l.setItems (["One", "Two", "Three"]);

var ¢ = this.getField("StateBox") ;
c.setItems([["California", "CA"], ["Massachusetts", "MA"],

["Arizona" ’ "AZ"11) K

var c¢ = this.getField ("NumberBox") ;
c.setItems(["1", 2, 3, ["PI", Math.PI]]);

Acrobat JavaScript Scripting Reference 267

- Acrobat JavaScript Scripting Reference
Field Methods

setLock

0 |©®| 0

Controls which fields are to be locked when a signature is applied to this signature field.
Once the fields are locked no modifications can be done to the fields. When the signature is
cleared, all the fields that were locked down are unlocked. The property settings can be
obtained using getLock.

Note: (Security ®): The method can be executed during a batch, application initialization,
console, or menu events. Not allowed in the Adobe Reader.

NoTe: This method cannot be applied to a field that is in a document that is already signed.

Parameters

oLock A Lock Object containing the lock properties.

Returns

trueif succesful, false otherwise, or can throw an exception.

Lock Object

A generic JS object containing lock properties. This object is passed to field.setLock
and returned by field. getLock for a signature field. It contains the following
properties.

Property Type Access Description

action String R/W The language independent name of the action. Values are:
A11: All fields in the document are to be locked.
Include: Only the fields specified in fields are to be locked.
Exclude: All fields except those specified in fields are to be

locked.
fields Array of R/W An array of strings containing the field names. Required if the value
Strings of action is Include or Exclude.

signatureGetSeedValue

6.0

Returns a SeedValue Generic Object that contains the seed value properties of a signature
field. Seed values are used to control properties of the signature, including the signature
appearance, reasons for signing, and the person.

See signatureSetSeedvValue.

268 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Field Methods

Parameters

None

Returns

A SeedValue Generic Object.

Example

The following illustrates accessing the seed value for a signature field.

var £ = this.getField("sigO");

var seedValue = f.signatureGetSeedvValue() ;

// displays the seed value filter and flags
console.println("Filter name:" + seedValue.filter);
console.println("Flags:" + seedValue.flags);

// displays the certificate seed value constraints
var certSpec = seedValue.certspec;

console.println("Issuer:" + certspec.issuer) ;

signaturelnfo

50 | ©|®

Returns a Signaturelnfo Object that contains the properties of the signature. The objectis a
snapshot of the signature that is taken at the time that this method is called. A security
handler may specify additional properties that are specific to the security handler.

NoTe: (Security (®): There are no restrictions on when this method can be called, however,
the specified security handler may not always be available; see
security.getHandler for details.

NoTe: Some properties of a signature handler, for example, certificates (a property
of the Signaturelnfo Object), may return a null value until the signature is
validated. Therefore, signatureInfo should be called again after

signaturevalidate.
Parameters
oSig (optional) The SecurityHandler Object to use to retrieve the signature
properties. If not specified, the security handler is determined by user
preferences: it is usually the handler that was used to create the
signature.
Returns

A Signaturelnfo Object that contains the properties of the signature. This type of object is
also used when signing signature fields, signing FDF objects, or with the
FDF.signatureValidate method.

Acrobat JavaScript Scripting Reference 269

- Acrobat JavaScript Scripting Reference
Field Methods

Example

The following illustrates how to access signature info properties.

// get all info

var f = getField(“Signaturel”);
f.signaturevalidate() ;

var s = f.signatureInfol();

console.println(“Signature Attributes:”);
for(i in s) console.println(1 + " = " + s[i]);

// get particular info

var £ = this.getField("Signaturel"); // uses the ppklite sig handler
var Info = f.signatureInfol();

// some standard signatureInfo properties

console.println("name = " + Info.name) ;
console.println("reason = " + Info.reason) ;
console.println("date = " + Info.date);

// additional signatureInfo properties from PPKLite
console.println("contact info = " + Info.contactInfo);

// get the certificate; first (and only) one
var certificate = Info.certificates([0];

// common name of the signer
console.println("subjectCN = " + certificate.subjectCN) ;
console.println("serialNumber = " + certificate.serialNumber) ;

// Display some information about this the distinguished name of signer
console.println("subjectDN.cn = " + certificate.subjectDN.cn) ;
console.println("subjectDN.o = " + certificate.subjectDN.o) ;

signatureSetSeedValue

6.0

©

ONNX)

270

Sets properties that are used when signing signature fields. The properties are stored in the
signature field and are not altered when the field is signed, the signature is cleared, or when
resetFormis called. Use signatureGetSeedValue to obtain the property settings.

Note: (Security (®): The method can be executed during a batch, application initialization,

console, or menu events. Not allowed in the Adobe Reader.

NoTe: Seed values cannot be set for author signatures. Author signatures are signatures

with a Signaturelnfo Object mdp property value of allowNone, default, or
defaultAndComments.

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Field Methods

Parameters

oSigSeedValue A SeedValue Generic Object containing the signature seed value
properties.

Returns

Nothing

SeedValue Generic Object

A generic JS object, passed to field.signatureSetSeedValue and returned by
field.signatureGetSeedValue, which represents a signature seed value. It has the
following properties:

Property Type Access Description
filter String R/W The language independent name of the security handler to be
used when signing.
subFilter Arrayof R/W An array of acceptable formats to use for the signature. Refer to
Strings the signature info object’s subFilter property for a list of known
formats.
version Number R/W The minimum version of the signature format dictionary that is
required when signing.
reasons Array of R/W A list of reasons that the user is allowed to use when signing.
Strings
certspec object R/W A seed value CertificateSpecifier Generic Object.
flags Number R/W Flags controlling which properties in this object are critical (1,

required) and not critical (0, optional). The value should be set
to the logical or of the following values:

1: if filter is critical,

2:if subFilter is critical,

4: if version is critical

8:if reasons field is critical.
If this field is not present, interpretation of all attributes is
optional.

Acrobat JavaScript Scripting Reference 271

- Acrobat JavaScript Scripting Reference
Field Methods

CertificateSpecifier Generic Object

This generic JS object contains the certificate specifier properties of a signature seed value.
Used in the certSpec property of the SeedValue Generic Object. This objects contains
the following properties::

Property Type Access Description
subject Array of R/W Array of Certificate Objects that are acceptable for signing.
gir‘zl;lfate Nore: If specified, the signing certificate must be an exact
) match with one of the certificates in this array.
issuer Array of R/W Array of Certificate Objects that are acceptable for signing.
(C)ebr.t;gtcate Nore: If specified, the signing certificate must be issued by a
) certificate that is an exact match with one of the
certificates in this array
oid Array of R/W Array of strings that contain Policy OIDs that must be present in the
Strings signing certificate. This property is only applicable of the issuer
property is present.
url String R/W A URL that can be used to enroll for a new credential if a matching
credential is not found.
flags Number R/W Bit flags controlling which properties in this object are
critical (1, required) and not critical (0, optional). The value
should be set to the logical or of the following values:
1if sujbect is critical,
2 if issuer is critical,
4 if oid is critical.
If this field is not present, interpretation of all attributes is
optional.
Example 1

Sets the signing handler as PPKMS and the format as "adbe .pkcs7.shal".
var £ = this.getField("sigO0");
f.signatureSetSeedvalue ({
filter: "Adobe.PPKMS",

subFilter: ["adbe.pkcs7.shal"],
flags: 0x03 });

Example 2

Sets the signing handler as PPKLite and the issuer of the signer’s certificate as caCert. Both
are mandatory seed values and signing will fail if either of constraint is not met.

var caCert = security.importFromFile ("Certificate", "/C/CA.cer");
f.signatureSetSeedvalue({filter: "Adobe.PPKLite",

272 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Field Methods

certspec: {
issuer: [caCert],
url: "http://www.ca.com/enroll.html",
flags : 0x02 },

flags: 0x01 });

signatureSign

50 @60 00O

Signs the field with the specified security handler. See also security.getHandler and
securityHandler.login.

NoTE: (Security@): This method can only be executed during batch, console, menu, or
application initialization events. Not available in the Adobe Reader. See the Event
Object for a discussion of Acrobat JavaScript events.

Note: Signature fields cannot be signed if they are already signed. Use resetFormto
clear signature fields.

Parameters

oSig Specifies the SecurityHandler Object to be used to sign. Throws an
exception if the specified handler does not support signing
operations. Some security handlers require that the user be logged in
before signing can occur. operations. Some security handlers require
that the user be logged in before signing can occur. If 0oSig is not
specified then this method will select a handler based on user
preferences or by prompting the user if bUI is true.

oInfo (optional) A Signaturelnfo Object specifying the writable properties of
the signature. See also signatureInfo.

cDIPath (optional) The device-independent path to the file to save to
following the application of the signature. If not specified, the file is
saved back to its original location.

bul (optional, version 6.0) Whether the security handler should show user
interface when signing. If true, oInfo and cDIPath are used as
default values in the signing dialogs. If £alse (the default), the
signing occurs without any user interface.

Acrobat JavaScript Scripting Reference 273

- Acrobat JavaScript Scripting Reference
Field Methods

cLegalAttest (optional, version 6.0) A string that can be provided when creating an
author signature.

Author signatures are signatures where the mdp property of the
Signaturelnfo Object has a value other then allowAll. When
creating an author signature, the document is scanned for legal
warnings and these warnings are embedded in the document. A
caller can determine what legal warnings are found by first calling
doc.getLegalWarnings. If warnings are to be embedded an
author may wish to provide an attestation as to why these warnings
are being applied to a document.

Returns

trueif the signature was applied successfully, false otherwise.

Example 1
The following example signs the "Signature” field with the PPKLite signature handler:

var myEngine = security.getHandler("Adobe.PPKLite") ;
myEngine.login("dps017", "/c/profile/dps.pfx");
var f = this.getField("Signature") ;

// Sign the field
f.signatureSign(myEngine,

{ password: "dps017", // provide password
location: "San Jose, CA", // ... see note below
reason: "I am approving this document",
contactInfo: "dpsmith@adobe.com",
appearance: "Fancy"});

NoTe: Inthe above example, a password was provided. This may or may not have been
necessary depending whether the Password Timeout had expired. The
Password Timeout can be set programmatically by
securityHandler.setPasswordTimeout.

Example 2
The following example illustrates signing an author signature field

var myEngine = security.getHandler("Adobe.PPKLite") ;
myEngine.login("dps017", "/c/profile/dps.pfx");

var £ = this.getField("AuthorSigFieldName") ;
var s = { reason: "I am the author of this document",
mdp: "allowNone" };
f.signatureSign ({
0Sig: myEngine,
oInfo: s,
bUI: false,
cLegalAttest: "Fonts are not embedded to reduce file size"

b

274 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Field Methods

signatureValidate

50 | ©

Validates and returns the validity status of the signature in a signature field. This routine

can be computationally expensive and take a significant amount of time depending on the
signature handler used to sign the signature.

NoTe: There are no restrictions on when this method can be called, however, the

parameter oSig will not always be available; see security.getHandler for
details.

Parameters

oSig (optional) The security handler to be used to validate the signature.
The value can be either a SecurityHandler Object or a
SignatureParameters Generic Object. If this handler is not specified,
the method uses the security handler returned by the signature’s
handlerName property.

buIl (optional, version 6.0) When true, allows Ul to be shown, if
necessary, when validating the data file. Ul may be used to select a
validation handler if none is specified. The default is false.

Returns

Returns the validity status of the signature. Validity values are:
-1: Not a signature field
0: Signature is blank
1: Unknown status
2: Signature is invalid
3: Signature of document is valid, identity of signer could not be verified
4: Signature of document is valid and identity of signer is valid.

See the status and statusText properties of the Signaturelnfo Object.
SignatureParameters Generic Object

A generic object with the following properties that specify security handlers to be used for
validation by field.signatureValidate:

Property Description

oSecHdlr The security handler object to use to validate this signature

Acrobat JavaScript Scripting Reference 275

- Acrobat JavaScript Scripting Reference
FullScreen Object

Property Description

bAltSecHdlr If true, an alternate security handler, selected based on user
preference settings, may be used to validate the signature. The
default is £alse, which means that the security handler returned
by the signature’s handlerName property is used to validate the
signature. This parameter is not used if oSecHd1r is provided.

Example

var f = this.getField("Signaturel") // get signature field
var status = f.signatureValidate() ;
var sigInfo f.signatureInfo() ;

if (status < 3)

var msg = "Signature not valid! " + sigInfo.statusText;
else

var msg = "Signature valid! " + sigInfo.statusText;

app.alert (msg) ;

FullScreen Object
50 | ®

The interface to fullscreen (presentation mode) preferences and properties. To acquire a
fullScreen object, use app. £s.

FullScreen Properties

backgroundColor

The background color of the screen in full screen mode. See Color Arrays for details.

Type: Color Array Access: R/W.

Example
app . fs.backgroundColor = color.ltGray;

clickAdvances

Whether a mouse click anywhere on the page will cause the viewer to advance one page.

Type: Boolean Access: R/W.

276 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

FullScreen Properties

cursor

Determines the behavior of the mouse pointer in full screen mode. The convenience
cursor object defines all the valid cursor behaviors:

Cursor Behavior Keyword

Always hidden cursor.hidden
Hidden after delay cursor.delay

Visible cursor.visible

Type: Number Access: R/W.

Example
app.fs.cursor = cursor.visible;
defaultTransition

The default transition to use when advancing pages in full screen mode. Use
transitions to obtain list of valid transition names supported by the viewer.

No Transitionisequivalentto app.fs.defaultTransition = "";

Type: Number Access: R/W.

Example
Put document into presentation mode

app.fs.defaultTransition = "WipeDown";
app.fs.isFullScreen = true;

escapeExits

Whether the escape key can be used to exit full screen mode.

Type: Boolean Access: R/W.

isFullScreen

Puts the Acrobat viewer in fullscreen mode rather than regular viewing mode. This only
works if there are documents open in the Acrobat viewer window.

Note: A PDF document being viewed from within a web browser cannot be put into
fullscreen mode.

Type: Boolean Access: R/W.

Acrobat JavaScript Scripting Reference

277

- Acrobat JavaScript Scripting Reference
FullScreen Properties

Example

app.fs.isFullScreen = true;

In the above example, the Adobe Acrobat viewer is set to fullscreen mode. If
isFullScreen was previously false, the default viewing mode would be set. The
default viewing mode is defined as the original mode the Acrobat application was in before
full screen mode was initiated.

loop

Whether the document will loop around to the beginning of the document in response to a
page advance (mouse click, keyboard, and/or timer generated) in full screen mode.

Type: Boolean Access: R/W.

timeDelay

The default number of seconds before the page automatically advances in full screen
mode. See useTimer to activate/deactivate automatic page turning.

Type: Number Access: R/W.

Example

app.fs.timeDelay = 5; // delay 5 seconds

app.fs.useTimer = true; // activate automatic page turning
app.fs.usePageTiming = true; // allow page override
app.fs.isFullScreen = true; // go into fullscreen

transitions

An array of strings representing valid transition names implemented in the viewer. No
Transitionis equivalent to setting defaultTransition to the empty string:

app.fs.defaultTransition = "";
Type: Array Access:R.

Example
This script produces a listing of the currently supported transition names.

console.println("[" + app.fs.transitions + "]1");

usePageTiming

Whether automatic page turning will respect the values specified for individual pages in
full screen mode. Set transition properties of individual pages using
setPageTransitions.

278 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Global Object

Type: Boolean Access: R/W.

useTimer

Whether automatic page turning is enabled in full screen mode. Use timeDelay to set
the default time interval before proceeding to the next page.

Type: Boolean Access: R/W.

Global Object

This is a static JavaScript object that allows you to share data between documents and to
have data be persistent across sessions. Such data is called persistent global data. Global
data-sharing and notification across documents is done through a subscription mechanism,
which allows you to monitor global data variables and report their value changes across
documents.

Creating Global Properties
You can specify global data by adding properties to the global object. The property type
can be a String, a Boolean, or a Number.

For example, to add a variable called "radius" and to allow all document scripts to have
access to this variable, the script simply defines the property:

global.radius = 8;

The global variable "radius" is now known across documents throughout the current viewer
session. Suppose two files, A.pdf and B. pdf, are open in the viewer, and the global
declaration is made in A.pdf. From within either file (A. pdf or B.pdf) you can calculate
the volume of a sphere using global.radius:

var V = (4/3) * Math.PI * Math.pow(global.radius, 3);

In either file, you obtain the same result, 2144.66058. If the value of global .radius
changes and the script is executed again, the value of V changes accordingly.

Deleting Global Properties

To delete a variable or a property from the global object, use the delete operator to
remove the defined property. For information on the reserved JavaScript keyword delete,
see Core JavaScript 1.5 Documentation.

For example, to remove the global.radius property, call the following script:

delete global.radius

Acrobat JavaScript Scripting Reference 279

- Acrobat JavaScript Scripting Reference
Global Methods

Global Methods

setPersistent

®

Controls whether a specified variable is persistent across invocations of Acrobat.

Persistent global data only applies to variables of type Boolean, Number, or String. Acrobat
6.0 places a 2-4k limit for the maximum size of the global persistent variables. Any data
added to the string after this limit is dropped.

The global variables that are persistent are stored upon application exit in the glob.js
file located in the user’s folder for Folder Level JavaScripts, and re-loaded at
application start. There is a 2-4k limit on the size of this file, for Acrobat 6.0 or later.

It is recommended that JavaScript developers building scripts for Acrobat, use a naming
convention when specifying persistent global variables. For example, you could name all
your variables "myCompany name™. This will prevent collisions with other persistent
global variable names throughout the documents.

Parameters
cVariable The variable (global property) for which to set persistence.
bPersist When true, the property will exist across Acrobat Viewer sessions.
When false (the default) the property will be accessible across
documents but not across the Acrobat Viewer sessions.
Returns
Nothing
Example

For example, to make the "radius" property persistent and accessible for other documents
you could use:

global.radius = 8; // declare radius to be global
global .setPersistent ("radius", true);// now say it’s persistent

The volume calculation, defined above, will now yield the same result across viewer
sessions, or until the value of global.radius is changed.

280 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Global Methods

subscribe

5.0

Allows you to automatically update one or more fields when the value of the subscribed
global variable changes. If the specified property is changed, even in another document,
the specified function is called. Multiple subscribers are allowed for a published property.

Parameters

cVariable The global property.

fCallback The function to call when the property is changed.

Returns

Nothing

Example

Suppose there are two files, setRadius . pdf and calcVolume . pdf, open in Acrobat
or Reader.

e In setRadius.pdf thereis a single button with the code:
global .radius = 2;

e IncalcVolumne.pdf thereis a Document-Level JavaScript named subscribe:
// In the Advanced > JavaScripts > Document JavaScripts
global.subscribe ("radius", RadiusChanged) ;
function RadiusChanged (x) // callback function

{

var V = (4/3) * Math.PI * Math.pow(x,3);
this.getField ("MyVolume") .value = V; // put value in text field

}

e Open both files in the Viewer, now, clicking on the button in setRadius.pdf file
immediately gives an update in the text field "MyVolume" in calcVolume.pdf of 33.51032
(as determined by global.radius =2).

The syntax of the callback function is as follows:

function fCallback (newval) {
// newval is the new value of the global variable you
// have subscribed to.
< code to process the new value of the global variable >
}

Acrobat JavaScript Scripting Reference 281

- Acrobat JavaScript Scripting Reference
Icon Generic Object

Icon Generic Object

This generic JS object is an opaque representation of a Form XObject appearance stored in
doc.icons. It is used with Field Objects of type button. The icon object contains the
following property:

Property Type Access Description

name string R The name of the icon. An icon may or may not have a name
depending on whether it exists in the document-level
named icons tree.

Icon Stream Generic Object

This generic JS object represents an icon stream. It is used by app . addToolButton and
collab.addStateModel. It has the following properties:

Property Description

read (nBytes) A function which takes the number of bytes to read and returns a
Hex encoded string. The data should be the icon representation as
a 32 bit per pixel with 4 channels (ARGB) 8 bits per channel with the
channels interleaved. If the icon has multiple layers, then the
function may return the pixels for the topmost layer, followed by
the next layer behind it, and so on.

width The icon width in pixels.

height The icon height in pixels.

Identity Object
5.0 S

This is a static object that identifies the current user of the application.

NOTE: (Security@): Identity object properties are only accessible during batch,
console, menu, and application initialization events in order to protect the privacy
of the user.

282 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Identity Properties

Identity Properties

corporation

The corporation name that the user has entered in the identity preferences panel.

Type: String Access: R/W.

email
The email address that the user has entered in the identity preferences panel.
Type: String Access: R/W.

loginName
The login name as registered by the operating system.
Type: String Access:R.

name
The user name that the user entered in the identity preferences panel.
Type: String Access: R/W.

Example

console.println("Your name is " + identity.name) ;
console.println("Your e-mail is " + identity.email) ;

Index Object

5.0

This is a non-creatable object returned by various methods of the Search Object and
Catalog Object. The index object represents a Catalog-generated index. You use this

object to perform various indexing operations using Catalog. You can find the status of the
index with a search.

Acrobat JavaScript Scripting Reference 283

284

Acrobat JavaScript Scripting Reference

Index Properties

Index Properties

available

name

Whether the index is available for selection and searching. An index may be unavailable if a
network connection is down or a CD-ROM is not inserted, or if the index administrator has
brought the index down for maintenance purposes.

Type: Boolean Access: R.

The name of the index as specified by the index administrator at indexing time.

See search. indexes, which returns an array of the index objects currently accessed by
the search engine.

Type: String Access:R.

Example

path

// Enumerate all of the indexes and dump their names

for (var i = 0; i < search.indexes.length; i++) {
console.println("Index[" + 1 + "] = " + gearch.indexes[i] .name) ;

}

The device-dependent path where the index resides. See Section 3.10.1, “File Specification
Strings”, in the PDF Reference for exact syntax of the path.

Type: String Access:R.

selected

Whether the index is to participate in the search. If true, the index will be searched as part
of the query, if £alse it will not be. Setting or unsetting this property is equivalent to
checking the selection status in the index list dialog.

Type: Boolean Access: R/W.

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Index Methods

Index Methods

build
6.0 X AR XK P)

Builds the index associated with the index object using the Catalog plug-in.

The index is built at the same location as the index file. If the index already exists, the
included directories are re-scanned for changes and the index is updated. If the index does
not exist, a new index is built.

The index build is started immediately if Catalog is idle. Otherwise, it gets queued with
Catalog.

Parameters

cExpr (optional) An expression to be evaluated once the build operation on
the index is complete. Default is no expression. See the PDF
Reference, “JavaScript Action” for more details.

bRebuildall (optional) If true, a clean build is performed. The index is first
deleted and then built. The default is false.

Returns

A CatalogJob Generic Object. The Catalogdob object can be used to check the job
parameters and status.

Example

/* Building an index */

if (typeof catalog != "undefined") {
var idx = catalog.getIndex ("/c/mydocuments/index.pdx") ;
var job = idx.build("Done ()", true);
console.println("Status : ", job.status);

}

Link Object

This object is used to set and get the properties and to set the JavaScript action of a link. A
linkobject is obtained from doc.addLink or doc.getLinks.

See also, doc . removeLinks.

Acrobat JavaScript Scripting Reference 285

- Acrobat JavaScript Scripting Reference
Link Properties

Link Properties

borderColor

60 | © (X

The border color of a 1ink object. See Color Arrays for information on defining color arrays
and how colors are used with this property.

Type: Array Access: R/W.
borderWidth
60 | © (X

The border width of the 1ink object.

Type: Integer Access: R/W.

highlightMode
60 | © (X

The visual effect to be used when the mouse button is pressed or held down inside an
active area of a link. The valid values are:

None

Invert (default)
Outline

Push

Type: String Access: R/W.

rect

60 | © (X

The rectangle in which the link is located on the page. Contains an array of four numbers,
the coordinates in rotated user space of the bounding rectangle, listed in the following
order: upper-left x, upper-left y, lower-right x and lower-right y.

Type: Array Access: R/W.

286 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
Link Methods

Link Methods

setAction

6.0 (X

Sets the specified JavaScript action for the MouseUp trigger for the 1ink object.

Parameters

cScript The JavaScript action to use.

Returns

Nothing

OCG Object

An OCG object represents an optional-content group in a PDF file. Content in the file can be
associated with one or more optional-content groups. Content belonging to one or more
OCGs is referred to as optional content, and its visibility is determined by the on/off states of
the OCGs to which it belongs. In the simplest case, optional content will belong to a single
OCG with the content being visible when the OCG is on and hidden when the OCG is off.
More advanced visibility behavior can be achieved by using multiple OCGs and different
visibility mappings.

Use doc .getOCGs to get an array of OCG objects for a PDF document.

OCG Properties

name

6.0

The text string seen in the Ul for this OCG. It can be used to identify OCGs, although it is not
necessarily unique.

Note: This property is not necessarily unique among OCGs in a document.

Type: String Access:R.

Example
/* Toggle the Watermark OCG */

Acrobat JavaScript Scripting Reference 287

- Acrobat JavaScript Scripting Reference
OCG Methods

function ToggleWatermark (doc)
{
var ocgArray = doc.getOCGs () ;
for (var i=0; i < ocgArray.length; i++) {
if (ocgArray[i] .name == "Watermark") {
ocgArray[i] .state = locgArray[i] .state;
}

state
6.0
Represents the current on/off state of this OCG.
Type: Boolean Access: R/W.
Example:

Turn on all the OCGs in the given document.

function TurnOnOCGsForDoc (doc)
{
var ocgArray = doc.getOCGs () ;
for (var i=0; i < ocgArray.length; i++) {
ocgArray [i] .state = true;
}

OCG Methods

setAction

6.0

Registers a JavaScript expression to be evaluated after every state change for this OCG.

Parameters

cExpr The expression to be evaluated after the OCG state changes.

Returns

Nothing

Example

/* Beep when the given ocg is changed */

288 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Plugln Object

function BeepOnChange (ocg)

{
}

ocg.setAction ("app.beep() ") ;

Plugin Object

5.0

This object gives access to information about the plug-in it represents. A plugIn object is
obtained using app .plugIns.

Plugin Properties

certified

If true, the plug-in is certified by Adobe. Certified plug-ins have undergone extensive
testing to ensure that breaches in application and document security do not occur. The
user can configure the viewer to only load certified plug-ins.

Type: Boolean Access:R.

Example

var aPlugins = app.pluglns;
var j=0;
for (var i1=0; i < aPlugins.length; i++)
if (laPlugins[i] .certified) j++;
console.println ("Report: There are "+j+" uncertified plugins loaded.") ;

loaded

If true, the plug-in was loaded.

Type: Boolean Access:R.

name
The name of the plug-in.

Type: String Access: R.

Example

// get array of PlugIn Objects
var aPlugins = app.pluglns;

Acrobat JavaScript Scripting Reference 289

- Acrobat JavaScript Scripting Reference
printParams Object

// get number of plugins
var nPlugins = aPlugins.length;
// enumerate names of all plugins
for (var 1 = 0; i < nPlugins; i++)
console.println("Plugin \#" + i + " is " + aPlugins[i] .name) ;

path
The device-independent path to the plug-in. See “File Specification Strings”, Section 3.10.1,
in the PDF Reference for the exact syntax of the path.
Type: String Access:R.

version

The version number of the plug-in. The integral part of the version number indicates the
major version, the decimal part indicates the minor and update versions. For example, 5.11
would indicate that the plug-in is major version 5, minor version 1, and update version 1.

Type: Number Access:R.

printParams Object

This object controls printing parameters that affect any document printed via JavaScript.
Changing this object does not change the user preferences or make any permanent
changes to the document.

In Acrobat version 6.0, doc . print takes a printParams object as its argument. You can
obtain printParams object from doc.getPrintParams. The returned object can
then be modified.

Many of the printParams properties take integer constants as values, which you can
access using constants. For example:

// get the printParams object of the default printer

var pp = this.getPrintParams () ;

// set some properties

pp.interactive = pp.constants.interactionLevel.automatic;
pp.colorOverride = pp.colorOverrides.mono;

// print

this.print (pp) ;

The constants object properties are all Integers, and are all Read access.

290 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

PrintParams Properties

PrintParams Properties

binaryOK

6.0

trueif a binary channel to the printer is supported. The default is true.

Type: Boolean Access: R/W.

bitmapDPI
6.0 (X

The dots per inch (DPI) to use when producing bitmaps or rasterizing transparency. Valid
range is 1 to 9600. If the document protections specify a maximum printing resolution, the
lower of the two values is used. The default is 300. lllegal values are treated as 300. See also
gradientDPI.

Type: Integer Access: R/W.

colorOverride

6.0

Whether to use color override. Values are the properties of the constants colorOverrides
Object. lllegal values are treated as auto, the default value.

Note: This property is supported on Windows platforms only.

colorOverrides Object

Property Description

auto Let Acrobat decide color overrides. This is the default.
gray Force color to grayscale.

mono Force color to monochrome.

Type: Integer constant Access: R/W.

Example

var pp = this.getPrintParams () ;
pp.colorOverride = pp.constants.colorOverrides.mono;

Acrobat JavaScript Scripting Reference 291

292

Acrobat JavaScript Scripting Reference

PrintParams Properties

this.print (pp) ;

colorProfile

6.0 X)

The color profile to use. A list of available color spaces can be obtained from the
printColorProfiles. The default is "Printer/PostScript Color Management"

Type: String

constants

6.0

Access: R/W.

Each instance of a printParams object inherits this property, which is a wrapper object
for holding various constant values. The constants object property values are all
Integers, and are all Read access. The values are listed with the printParams properties

to which they apply.

The constants objects are used to specify option values of some of the other properties

of the printParams object, as shown in the following table:

constant object contains constant values for printParams property
colorOverrides colorOverride
fontPolicies fontPolicy
handling pageHandling
interactionLevel interactive
printContents printContent
flagValues flags
rasterFlagValues rasterFlags
subsets pageSubset
tileMarks tileMark
usages usePrinterCRD
useTlConversion.
Type: object Access:R.

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
PrintParams Properties

downloadFarEastFonts

6.0
When true, send Far East fonts to the printer if needed. Set to £alse if printer has Far East
fonts but incorrectly reports it needs them. The default is true.
Type: Boolean Access: R/W.
fileName
6.0
If not empty, the device-independent pathname for a filename to be used instead of
sending the print job to the printer (Print to File). The pathname may be relative to the
location of the current document. When printing to a file, if the interaction level (See
interactive)issetto full,itis lowered to automatic. The default value is the empty
string.
NoTe: Printing to a file produces output suitable for the printer, for example, Postscript or
GDI commands.
Note: When printerName is an empty string and £ileName is nonempty the current
document is saved to disk as a PostScript file.
Type: String Access: R/W.
Example
var pp = this.getPrintParams() ;
pp.fileName = "/c¢/print/myDoc.prn";
this.print (pp) ;
Example 2

Save the current document as a PostScript file.

var pp = this.getPrintParams () ;
pp.fileName = "/c/temp/myDoc.ps";
pp.printerName = "";

this.print (pp) ;

Acrobat JavaScript Scripting Reference 293

- Acrobat JavaScript Scripting Reference
PrintParams Properties

firstPage

6.0

The first 0-based page number of the document to print. The first page of any document is
0, regardless of page number labels. Values out of the document page range are treated as
0. The default value is 0.

See also lastPage.

Type: Integer Access: R/W.

Example
var pp = this.getPrintParams() ;
pp.firstPage = 0;
pp.lastPage = 9;
this.print (pp) ;

flags

6.0

A bit field of flags to control printing. These flags can be set or cleared using bitwise
operations through the constants flagValues Object.

Zero or more flags can be set; unsupported flags are ignored. The flags default to those set
by user preferences.

flagValues Object

Where @ appears in the Reader column, the property is not available for any version of
the Adobe Reader.

Property Reader Description

applyOverPrint (X Do overprint preview when printing, turn off if print
natively supports overprinting

Use the softProofing settings before doing color
management

applySoftProofSettings

applyWorkingColorSpaces Apply working color spaces when printing

emitHalftones Emit the halftones specified in the document

PostScript only, do include PostScript XObjects'
content in output

emitPostScriptXObjects

Q 000 O

emitFormsAsPSForms Converts Form XObjects to PS forms. The default is off.

294 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

PrintParams Properties

Property Reader Description

maxJP2KRes 0 Use the maximum resolution of JPeg2000 images
instead of the best matching resolution.

setPageSize Enable setPageSize, choose paper tray by PDF page
size

suppressBG 0 Do not emit the BlackGeneration in the document

suppressCenter Do not center the page

suppressCJKFontSubst 0 Suppress CJK Font Substitution on Printer—does not
apply when kAVEmi tFontAllFonts is used

suppressCropClip Do not emit the cropbox page clip

suppressRotate Do not rotate the page

suppressTransfer 0 Do not emit the transfer functions in the document

suppressUCR (X Do not emit the UnderColorRemovals in the document

useTrapAnnots 0 Print TrapNet and PrinterMark annotations, even if
printing "document only".

usePrintersMarks Q Print PrinterMark annotations, even if printing
"document only".

Type: Integer Access: R/W.
Example 1

Check the “Apply Proof Settings” checkbox Output options in the Advanced Printing Setup
dialog.

pp = getPrintParams () ;

fv = pp.constants.flagValues;

// or pp.flags |= fv.applySoftProofSettings;;
pp.flags = pp.flags | fv.applySoftProofSettings;
this.print (pp) ;

Example 2
Uncheck “Auto-Rotate and Center” (checked by default) in the Print dialog.

pp = getPrintParams () ;

fv = pp.constants.flagValues;

pp.flags |= (fv.suppressCenter | fv.suppressRotate);
this.print (pp) ;

Acrobat JavaScript Scripting Reference 295

- Acrobat JavaScript Scripting Reference
PrintParams Properties

Example 3

Check “Emit Undercolor Removal/Black Generation” checkbox of the PostScript Options in
the Advanced Printing Setup dialog.

pp = getPrintParams() ;

fv = pp.constants.flagValues;

pp.flags &= ~(fv.suppressBG | fv.suppressUCR)
this.print (pp)

fontPolicy

6.0

Sets the font policy. The value of the fontpolicy property is set through the
constants fontPolicies Object. The default is pageRange.

Type: Integer Access: R/W.

fontPolicies Object

Property Description

everyPage Emit needed fonts before every page, free all fonts after each page. This
produces the largest, slowest print jobs, but requires the least amount
of memory from the printer.

jobStart Emit all fonts used at the beginning of the print job, free them at the
end of the print job. This produces the smallest, fastest print jobs, but
requires the most memory from the printer.

pageRange (Default) Emit fonts before the first page that uses them, free them
after the last page that uses them. This also produces the smallest,
fastest print jobs, and can use less memory. However, the produced
print job must be printed as produced due to page ordering.

NoTe: pageRange can be a good compromise between speed and
memory, but do not use it if the postscript pages will be
programmatically reordered afterwards.

gradientDPI
6.0 (X

The dots per inch to use when rasterizing gradients. This value can generally be set lower
than bitmapDPT because it affects areas to which the eye is less sensitive. It must be set
from 1 to 9600. lllegal values are treated as 150. If the document protections specify a
maximum printing resolution, the lower of the two values will be used. The default value is
150.

296 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
PrintParams Properties

Type: Integer Access: R/W.

interactive

6.0

Sets the level of interaction between the user and the print job. The value of the
interactive property is set through the constants InteractionLevel Object. The
defaultis full.

Type: Integer Access: R/W.

InteractionLevel Object

Property Description

automatic No print dialog is displayed. During printing a progress monitor and cancel
dialog is displayed and removed automatically when printing is complete.

full Displays the print dialog allowing the user to change print settings and requiring
the user to press OK to continue. During printing a progress monitor and cancel
dialog is displayed and removed automatically when printing is complete.

silent No print dialog is displayed. No progress or cancel dialog is displayed. Even error
messages are not displayed.

Example

var pp = this.getPrintParams () ;

pp.interactive = pp.constants.interactionLevel.automatic;
pp.printerName = "Adobe PDF";

this.print (pp) ;

lastPage

6.0

The last 0-based page number of the document to print. The term “0-based” means the first
page of any document is O, regardless of page number labels. If the value is less then
firstPage or outside the legal range of the document, this reverts to the default value.
The default value is the number of pages in the document less one.

See firstPage for an example.

Type: Integer Access: R/W.

Acrobat JavaScript Scripting Reference 297

- Acrobat JavaScript Scripting Reference
PrintParams Properties

pageHandling

6.0

Takes one of four values. The value of the pageHandling property is set through the
constants handling Object. If set to an illegal value it is treated as shrink. The default is
shrink.

Type: Integer Access: R/W.
handling Object

Property Reader Description
fit Pages are enlarged or shrunk to fit the printer’s paper
shrink Small pages are printed small, large pages are shrunk to fit on

the printer’s paper

tileall (X All pages are printed using tiling settings. One use of this is to
turn a normal sized page into a poster by setting tile zoom > 1

tileLarge (@) Small or normal pages are printed original size, large pages
are printed on multiple sheets of paper.

Example

var pp = this.getPrintParams () ;
pp.pageHandling = pp.constants.handling.shrink;
this.print (pp) ;

pageSubset

6.0

Select even, odd, or all the pages to print. The value of pageSubset is set through the
constants subsets Object. The default is all.

Type: Integer Access: R/W.
subsets Object

Property Description

all Print all pages in page range.

even Print only the even pages. Page labels are ignored for this. The document
is treated as if it were numbered 1 through n, the number of pages.

298 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

PrintParams Properties

Property Description

odd Print only the odd pages.

Example

var pp = this.getPrintParams () ;

pp.pageSubset = pp.constants.subsets.even;
this.print (pp) ;

printAsimage

6.0

Set to true to send pages as large bitmaps. This can be slow and more jagged looking but
can work around problems with a printer’s PostScript interpreter. Set bitmapDPI to
increase or decrease the resolution of the bitmap. If interaction (see interactive)is

full, the user’s printer preferences for printAsImage will be used. The default is
false.

Type: Boolean Access: R/W.

printContent

6.0

Sets the contents of the print job. The value of the printContent property is set through
the constants printContents Object. The default is doc.

Type: Integer Access: R/W.
printContents Object

Property Description
doc Emit the document contents. Document comments are not
printed

docAndComments Emit the document contents and comments.

formFieldsOnly Emitthe contents of form fields only. Useful for printing onto pre-
preprinted forms.

Example

var pp = this.getPrintParams() ;
pp.interactive = pp.constants.interactionLevel.silent;

pp.printContent = pp.constants.printContent.formFieldsOnly;
this.print (pp) ;

Acrobat JavaScript Scripting Reference

299

- Acrobat JavaScript Scripting Reference
PrintParams Properties

printerName

6.0

Set or get the name of destination printer. The printerName property is a Windows-only
feature; currently, the destination printer cannot be set through this property on the Mac.

By default, printerName is set to the name of the default printer. If set printerName
to an empty string the default printer will be used. When printerName is an empty
string and £ileName is a nonempty string, the current document is saved to disk as a
PostScript file. See Example 2 below.

See also app .printerNames.

Type: String Access: R/W.

Example 1

var pp = this.getPrintParams () ;
pp.printerName = "hp officejet d series";
this.print (pp) ;

Example 2
Save the current document as a PostScript file.

var pp = this.getPrintParams () ;
pp.fileName = "/c/temp/myDoc.ps";
pp.printerName = "";

this.print (pp) ;

psLevel

6.0

Level of PostScript that is emitted to PostScript printers. Level 0 indicates to use the
PostScript level of the printer. Level 1 is not supported. In addition to 0, current legal values
of psLevel are 2 and 3. If the printer only supports PostScript level 1, printAsImage is
set to true. lllegal values are treated as 0. The default value for psLevelis 0.

Type: Integer Access: R/W.

rasterFlags

6.0 X)

A bit field of flags. These flags can be set or cleared using bitwise operations through the
constants rasterFlagValues Object. The default is set by user preferences.

Type: Integer Access: R/W.

300 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
PrintParams Properties

rasterFlagValues Object

Property Reader Description

textToOutline (X Text converted to outlines can become thicker (especially
noticeable on small fonts). If text is mixed into artwork with
transparency it may be converted to outline during flattening,
resulting in inconsistency with text that is not mixed into
artwork. In this case turning on this option will ensure all text
looks consistent.

strokesToOutline (X Strokes converted to outlines can become thicker (especially
noticeable on thin strokes). If strokes are mixed into artwork
with transparency they may be converted to outlines during
flattening, resulting in inconsistency with strokes that are not
mixed into artwork. In this case turning on this option will
ensure all strokes looks consistent.

allowComplexClip (X Select this to ensure that the boundaries between vector
artwork and rasterized artwork fall closely along object paths.
Selecting this option reduces stitching artifacts that result
when part of an object is flattened while another part of the
object remains in vector form. However, selecting this option
may result in paths that are too complex for the printer to
handle.

preserveOverprint () Select this if you are printing separations and the document
contains overprinted objects. Selecting this option generally
preserves overprint for objects that are not involved in
transparency and therefore improves performance. This
option has no effect when printing composite. Turning this off
might result in more consistent output since all overprinting
will be flattened whether it is involved in transparency or not.

Example 1

Check the “Convert All Text to Outlines” checkbox in the Transparency Flattening option of
the Advanced Print Setup.

joe getPrintParams () ;

rf = pp.constants.rasterFlagValues;
pp.rasterFlags |= rf.textToOutline;
this.print (pp) ;

Example 2

Uncheck "Complex Clip Regions” (checked by default) in the Transparency Flattening
option of the Advanced Print Setup.

pp = getPrintParams () ;

Acrobat JavaScript Scripting Reference 301

- Acrobat JavaScript Scripting Reference
PrintParams Properties

rf = pp.constants.rasterFlagValues;

pp.rasterFlags = pp.rasterFlags & ~rf.allowComplexClip;
// or pp.rasterFlags &= ~rf.allowComplexClip;
this.print (pp) ;

reversePages

6.0

Set to true to print pages in reverse order (last to first). The default value is false.

Type: Boolean Access: R/W.

tileLabel
6.0 (X

Label each page of tiled output. Labeled pages indicate row and column, filename, and
print date. The default is false.

Type: Boolean Access: R/W.
tileMark
6.0 (X

Tile marks indicate where to cut the page and where overlap occurs. The value is set
through the constants tileMarks Object. If set to an illegal value it is treated as none.
The default is none.

Type: Integer Access: R/W.
tileMarks Object

Property Description
none No tile marks
west Western style tile marks
east Eastern style tile marks.

302 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

PrintParams Properties

tileOverlap

6.0

o

The number of points that tiled pages have in common. Value must be between 0 and 144,
lllegal values are treated as 0. The default value is 0.

Type: Integer Access: R/W.
tileScale
6.0 (X)
The amount that tiled pages are scaled. Pages that are not tiled are unaffected by this value.
Default is unscaled (1.0). Larger values increase the size of the printout (for example, 2.0 is
twice as large, a value of 0.5 is half as large). The value of tileScale must be between
0.01 and 99.99. lllegal values are treated as 1.0, which is the default value.
Type: Number Access: R/W.
transparencylevel
6.0 (X
An integer value from 1 to 100 indicates how hard Acrobat tries to preserve high level
drawing operators. A value of 1 indicates complete rasterization of the image which results
in poor image quality but high speeds. A value of 100 indicates as much should be
preserved as possible, but can result in slow print speeds. If set to an illegal value, 100 is
used. When rasterizing, the bitmapDPI and gradientDPI values are used. The default
value is 100.
Type: Integer Access: R/W.
usePrinterCRD
6.0

Takes one of three values. The value is set through the constants usages Object. See also

usePrinterCRD; the two properties use the same values, but the interpretations are
different.

Type: Integer Access: R/W.

Acrobat JavaScript Scripting Reference 303

- Acrobat JavaScript Scripting Reference
RDN Generic Object

usages Object

Property Description for usePrinterCRD

auto Let Acrobat decide if printer Color Rendering Dictionary should be used.
Acrobat maintains a list of a handful of printers that have incorrect CRDs.

Illegal values are treated as auto. The default is auto.
use Use printer’s Color Rendering Dictionary.

noUse Do not use printer’s Color Rendering Dictionary.

useT1Conversion

6.0

Takes one of three values. The value of the useT1Conversion property is set through
the constants usages Object. See also usePrinterCRD; the two properties use the
same values, but the interpretations are different.

Note: This property is supported on Windows platforms only.

Type: Integer Access: R/W.

This property uses the usages Object values as follows.

Property Description for useT1Conversion

auto Let Acrobat decide whether to disable converting Type 1 fonts to more
efficient printer representations (for example, TrueType). Acrobat maintains
a list of a handful of printers that have problems with these fonts.

lllegal values are treated as auto. The default is auto.

use Allow conversion of Type 1 fonts even if printer is known to have problems
with alternative font representations.

noUse Never convert Type 1 fonts to more efficient representations..

RDN Generic Object

This generic object represents a Relative Distinguished Name. It is used by
securityHandler. newUser and the certificate.issuerDNand subjectDN
properties.

304 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

Report Object
It has the following properties.
Property Type Access Description
c String R Country or Region. Must be a two-character upper case

ISO 3166 standard string (for example, 'US’)

cn String R Common name (for example, John Smith’)

o String R Organization name (for example, ‘Adobe Systems Inc!)
ou String R Organizational unit (for example, ‘Acrobat Engineering’)
e String R Email address (for example, ‘jsmith@adobe.com’)

Report Object

The Report object allows the user to programmatically generate PDF documents suitable
for reporting with JavaScript. Use the Report constructor to create a Report object; for
example,

var rep = new Report () ;

The properties and methods can then be used to write and format a report.

Report Properties

absindent

50 | © X B X)

Controls the absolute indentation level. It is desirable to use indent/outdent only whenever
possible, as those calls correctly handle indentation overflows.

If a report is indented past the middle of the page, the effective indent is set to the middle.
Note that divide does a little squiggly bit to indicate that it's been indented too far.

Type: Number Access: R/W.

color

50 | © X B X)

Controls the color of any text and any divisions written into the report.

Acrobat JavaScript Scripting Reference 305

- Acrobat JavaScript Scripting Reference
Report Properties

Text is written to the report with writeText and divisions (horizontal rules) are written
using divide.

Type: Color Access: R/W.

Example

var rep = new Report () ;
rep.size = 1.2;

rep.color = color.blue;
rep.writeText ("Hello World!");

size
50 | © X B X)

Controls the size of any text created by writeText It is a multiplier. Text size is
determined by multiplying the size property by the default size for the given style.

Type: Number Access: R/W.

Example

var rep = new Report () ;
rep.size = 1.2;
rep.writeText ("Hello World!");

style
60 | © (XX

This property controls the style of the text font for the text created by writeText. Values
of styleare

DefaultNoteText
NoteTitle

Example

var rep = new Report () ;
rep.size = 1.2;

rep.style = "DefaultNoteText";
rep.writeText ("Hello World!");
rep.open ("My Report") ;

306 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
Report Methods

Report Methods

breakPage
50 | © X B X)

Ends the current page and begins a new one.

Parameters

None

Returns
Nothing

divide
0 @ |O]Q

Writes a horizontal rule across the page at the current location with the given width. The
rule goes from the current indent level to the rightmost edge of the bounding box. If the
indent level is past the middle of the bounding box, the rule has a squiggly bit to show this.

Parameters

nWwidth (optional) The horizontal rule width to use.

Returns
Nothing

indent

50 | © X B X)

Increments the current indentation mark by nPoints or the default amount. If a report is
indented past the middle of the page, the effective indent is set to the middle. Note that
divide makes a squiggly bit to indicate that it has been indented too far.

See writeText for an example of usage.

307

Acrobat JavaScript Scripting Reference

- Acrobat JavaScript Scripting Reference
Report Methods

Parameters

nPoints (optional) The number of points to increment the indentation mark.

Returns

Nothing

outdent

0 @ |O|Q

The opposite of indent; that is, decrements the current indentation mark by nPoints or
the default amount.

See writeText for an example of usage.

Parameters

nPoints (optional) The number of points to decrement the indentation mark.

Returns

Nothing

open

0 @ | O]Q

Ends report generation, opens the report in Acrobat and returns a Doc Object that can be
used to perform additional processing of the report.

Parameters

cTitle The report title.

Returns
A Doc Object.

Example

var docRep = rep.open ("myreport.pdf") ;
docRep.info.Title = "End of the month report: August 2000";
docRep.info.Subject = "Summary of comments at the August meeting";

See writeText for a more complete example.

308 Acrobat JavaScript Scripting Reference

save

50 | © (X)

o

Acrobat JavaScript Scripting Reference
Report Methods

Ends report generation and saves the report to the specified path.

NOTE: (Security@): This method can only be executed during batch or console events. See
the Event Object for a discussion of Acrobat JavaScript events.

Parameters

cDIPath

cFS

The device-independent path.

(optional) The file system. The only value for cFSis "CHTTP"; in this
case, the cDIPath parameter should be an URL. This parameter is
only relevant if the web server supports WebDAV.

Returns

Nothing

Example 1

rep.save (" /c/myReports/myreport.pdf") ;

Example 2

rep.save ("http://www.mycompany/reports/myreport.pdf", "CHITP");

mail

50 | © (X

o

Ends report generation and mails the report. See also mailGetAddrs, mailMsg,
mailDoc, mailForm

Parameters

bUT

cTo
cCc

cBcc

(optional) Whether to display a user interface. If true (the default)
the rest of the parameters are used to seed the compose-new-
message window that is displayed to the user. If £alse, the cTo
parameter is required and all others are optional.

(optional) A semicolon-separated list of recipients for the message.
(optional) A semicolon-separated list of CC recipents for the message.

(optional) A semicolon-separated list of BCC recipents for the
message.

Acrobat JavaScript Scripting Reference

309

- Acrobat JavaScript Scripting Reference
Report Methods

cSubject (optional) The subject of the message. The length limit is 64k bytes.
cMsg (optional) The content of the message. The length limit is 64k bytes.
Returns
Nothing

Report
50 | © | QO

A constructor. Creates a new Report object with the given media and bounding boxes
(values are defined in points or 1/72 of an inch). Defaults to a 8.5 x 11 inch media box and a
bounding box that is indented .5 inches on all sides from the media box.

Parameters
aMedia (optional) The media type.
aBBox (optional) The bounding box size.
Returns
Nothing
writeText

50 | © X B X)

Writes out a block of text to the report. Every call is guaranteed to begin on a new line at
the current indentation mark. Correctly wraps Roman, CJK, and WGL4 text.

Parameters

String The block of text to use.

Example

// Get the comments in this document, and sort by author
this.syncAnnotScan() ;
annots = this.getAnnots ({nSortBy: ANSB Author}) ;

// open a new report
var rep = new Report () ;

rep.size = 1.2;
rep.color = color.blue;

310 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

Row Generic Object

rep.writeText ("Summary of Comments: By Author") ;
rep.color = color.black;

rep.writeText (" ");

rep.writeText ("Number of Comments: " + annots.length);
rep.writeText (" ");

var msg = "\200 page %s: \"%s\"";

var theAuthor = annots[0] .author;

rep.writeText (theAuthor) ;

rep.indent (20) ;

for (var i1=0; i < annots.length; i++) {

if (theAuthor != annots([i].author) ({

theAuthor = annots[i] .author;
rep.writeText (" ") ;
rep.outdent (20) ;
rep.writeText (theAuthor) ;
rep.indent (20) ;

}

rep.writeText (util.printf (msg, 1 + annots[i] .page, annots[i].contents)) ;

}

// now open the report

var docRep = rep.open ("myreport.pdf") ;

docRep.info.Title = "End of the month report: August 2000";
docRep.info.Subject = "Summary of comments at the August meeting";

See the file Annots. js for additional examples of the Report object.

Row Generic Object

This generic JS object contains the data from every column in a row. It is returned by
statement.getRow. It contains the following properties:

Property Type Access Description

columnArray Array R An array of Column Generic Objects.

This is equivalent to what
statement.getColumnArray would return if
called on the same statement at the same time
that this row object was created.

column properties any R There is a property corresponding to each column
selected by the query, containing the data for that
row in that column.

Acrobat JavaScript Scripting Reference 311

- Acrobat JavaScript Scripting Reference
Search Object

Search Object

5.0

The searchobiject is a static object that accesses the functionality provided by the
Acrobat Search plug-in. This plug-in must be installed in order to interface with the
search oobject (see available).

See also the Index Object, which is returned by some of the methods of the search
object.

The results for query calls are displayed in Acrobat's Find dialog.

NoTe: Acrobat 6.0 indexes are incompatible with the search engines of prior versions of
Acrobat.

Note: In Acrobat 6.0, searching indexes created by versions of Acrobat prior to 6.0 is not
possible on the Mac platform.

Search Properties

available

Returns true if the Search plug-in is loaded and query capabilities are possible. A script
author should check this boolean before performing a query or other search object
manipulation.

Type: Boolean Access:R.

Example
Make sure the search object exists and is available.

if (typeof search != "undefined" && search.available) {
search.query ("Cucumber") ;
}

docinfo

6.0

Whether the document Information is searched for the query. The defaultis false.

Type: Boolean Access: R/W.

312 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

Search Properties

docText

6.0

Whether the document text is searched for the query. The default is true.

Type: Boolean Access: R/W.
docXMP
6.0
Whether document-level XMP metadata is searched for the query. The default is false.
Type: Boolean Access: R/W.
bookmarks
6.0

Whether bookmarks are searched for the query. The default is false

Type: Boolean Access: R/W.

ignoreAsianCharacterWidth

6.0
Whether the Kana characters in the document exactly match the search query. The default
is false.
Type: Boolean Access: R/W.
indexes
Returns an array of all of the Index Objects currently accessible by the search engine.
Type: Array Access:R.
Example

Enumerate all of the indexes and dump their names.

for (var i = 0; i < search.indexes.length; i++) {
console.println("Index[" + 1 + "]=", search.indexes[i] .name) ;
}

Acrobat JavaScript Scripting Reference 313

- Acrobat JavaScript Scripting Reference
Search Properties

jpegExif

6.0

Whether EXIF data associated with JPEG images in the PDF is searched. The default is

false.
Type: Boolean Access: R/W.
legacySearch
6.0
Returns true if the Search5.api plug-in is loaded. Search5.api plug-in provides the
capability to search indexes generated by Acrobat Catalog in Acrobat 5.0 (or earlier
version). See the sections in the Acrobat Online Guide pertaining to searching such
indexes.
Type: Boolean Access:R.
markup
6.0
Whether markup (annotations) are searched for the query. The default is false.
Type: Boolean Access: R/W.
matchCase
Whether the search query is case sensitive. The default is false.
Type: Boolean Access: R/W.
matchWholeWord
6.0

Whether search finds only occurrences of complete words that are specified in the query.
For example, when this option is set to true, if you search for the word "stick”, the words
"tick" and "sticky" will not be highlighted. The defaultis false.

Type: Boolean Access: R/W.

314 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

Search Properties

maxDocs

The maximum number of documents that will be returned as part of the search query. The
default is 100 documents.

Type: Integer Access: R/W.

proximity

refine

Whether the search query will reflect the proximity of words in the results ranking when
performing the search that contains AND boolean clauses. The default is £alse. See the
sections in the Acrobat Online Guide pertaining to Search capabilities for a more thorough
discussion of proximity.

Type: Boolean Access: R/W.

Whether the search query will take the results of the previous query and refine the results
based on the next query. The default is £alse. See the sections in the Acrobat Online
Guide pertaining to Search capabilities for a more thorough discussion of refining queries.

Type: Boolean Access: R/W.

soundex

®

stem

Whether the search query will take the sound of words (for example, MacMillan, McMillan,
McMilon) into account when performing the search. The defaultis false. See the sections
in the Acrobat Online Guide pertaining to Search capabilities for a more thorough
discussion of soundex.

Note: Beginning with Acrobat 6.0, the use of this property is discouraged. This property
has a value of falseand access is restricted to read only.

Type: Boolean Access:R.

Whether the search query will take the stemming of words (for example, run, runs, running)
into account when performing the search. The default is £alse. See the sections in the
Acrobat Online Guide pertaining to Search capabilities for a more thorough discussion of
stemming.

Type: Boolean Access: R/W.

Acrobat JavaScript Scripting Reference 315

- Acrobat JavaScript Scripting Reference
Search Methods
thesaurus

®

Whether the search query will find similar words. For example, searching for "embellish"
might yield "enhanced’, "gracefully”, or "beautiful". The default is false.

NoTe: Beginning with Acrobat 6.0, the use of this property is discouraged. This property
has a value of falseand access is restricted to read only.

Type: Boolean Access: R.

wordMatching

6.0

How individual words in the query will be matched to words in the document. Values are:

MatchPhrase
MatchAllWords
MatchAnyWord
BooleanQuery (default)

This property is relevant only when a query has more than one word. The BooleanQuery
option is ignored when searching active document.

Type: String Access: R/W.

Search Methods

addIndex
50 | P

Adds the specified index to the list of searchable indexes.

Parameters
cDIPath A device-independent path to an index file on the user’s hard drive.
See “File Specification Strings’, Section 3.10.1, in the PDF Reference for
the exact syntax of the path.
bSelect (optional) Whether the index should be selected for searching.

316 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Search Methods

Returns

An Index Object.

Example
Adds the standard help index for Acrobat to the index list:

search.addIndex (" /c/program files/adobe/acrobat 5.0/help/exchhelp.pdx",
true) ;

getindexForPath

Searchs the index list and returns the index object whose path corresponds to the
specified path.

Parameters
cDIPath A device-independent path to an index file on the user’s hard drive.
See “File Specification Strings’, Section 3.10.1, in the PDF Reference for
the exact syntax of the path.
Returns

The Index Object whose path corresponds to the specified path.

query

Searches the specified document or index for the specified text. Properties associated with
the search object (such as matchCase, matchWholeWord, stem) may affect the

result.
Parameters
cQuery The text for which to search.
cWhere (optional) Specifies where the text should be searched. Values are:
ActiveDoc
Folder
Index
ActiveIndexes (default)
cDPIPath (optional) A device-independent path to a folder or Catalog index on
the user's computer. See "File Specification Strings", Section 3.10.1, in
the PDF Reference for the exact syntax of the path.
When cWhere is Folder or Index, this parameter is required.
Returns
Nothing

Acrobat JavaScript Scripting Reference 317

- Acrobat JavaScript Scripting Reference
Security Object

Examples

Search for the word "Acrobat".

cWhere Query
ActiveIndexes search.query ("Acrobat") ; // "ActiveIndexes" is the default.
search.query ("Acrobat", "ActiveIndexes") ;
ActiveDoc search.query ("Acrobat", "ActiveDoc") ;
Folder search.query ("Acrobat", "Folder", "/c/myDocuments") ;
search.query ("Acrobat", "Folder", "//myserver/myDocuments") ;
Index search.query ("Acrobat", "Index", "/c/Myfiles/public/index.pdx") ;
removelndex

50 | ®

Removes the specified index object from the index list.

Parameters

index The Index Object to remove from the index list.

Returns

Nothing

Security Object
5.0 ORKX)

The security object is a static JavaScript object that exposes security-related PDF functions
such as encryption and digital signatures. Security functions are performed using a
SecurityHandler Object which is obtained from the security object using the getHandler
method.

NoOTE: (Security@): The Security Object is available without restriction, including in Adobe
Reader. The methods and properties of the Security Object can only be executed
during batch, console, menu, or application initialization events including in Adobe
Reader, except where otherwise stated. See the Event Object for a discussion of
Acrobat JavaScript events.

318 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

Security Properties

Security Properties

handlers

5.0 ®

Returns an array containing the language-independent names of the available security
handlers that can be used for encryption or signatures. See also SecurityHandler Object.

Beginning with Acrobat 6.0, access to this property is unrestricted, to allow querying to see
what handlers are available.

Type: Array Access:R.

validateSignaturesOnOpen

50 PO | O

Gets or sets the user-level preference that causes signatures to be automatically validated
when a document is opened.

NoTe: (Security ®):The property can be used to get in all situations, but can only set new
values during batch, console, application initialization and menu events.

Type: Boolean Access: R/W.

Security Methods

chooseRecipientsDialog

6.0 ©| O

Opens a dialog that allows a user to choose a list of recipients. Returns an array of generic
Group objects that can be used when encrypting documents or data using either

encryptForRecipients or addRecipientListCryptFilter methods of the
Doc Object.

Note: Can be executed only during console, menu, or application initialization events. Not
available in Reader.

Acrobat JavaScript Scripting Reference 319

- Acrobat JavaScript Scripting Reference
Security Methods

Parameters

oOptions A DisplayOptions Generic Object containing the parameters for the
display options.

Returns

An array of generic Group Objects.

See doc.encryptForRecipients for a description of the generic Group Object.
DisplayOptions Generic Object

It contains the following properties:

Property Description

bAllowPermGroups Controls whether permissions can be set for entries in
the recipient list. Default value is true.

bPlaintextMetadata Controls whether the checkbox is displayed that allows
a user to select whether meta data is plaintext or
encrypted, and also the default value. If not specified,
the checkbox is not shown. If specified, the checkbox is
shown and the default value is the value of this

property.

cTitle The title to be displayed in the dialog. The default is
‘Choose Recipients’.

cNote A note to be displayed in the dialog. The default is to
not show any note.

bAllowImportFromFile Whether the option is displayed that allows a user to
import recipients from a file. The default value is true.

bRequireEncryptionCert If true, recipients will be required to include an
encryption certificate. The default value is true.

bRequireEmail If true, recipients will be required to include an email
address. The default value is false.

bUserCert If true, the user will be prompted to provide his or her
own certificate so that he or she can be included in the
list of recipients. Setting this flag to trueresultsina
prompt but does not require that the user provide a
certificate.

Example 1

Retrieve groups with permissions

320 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
Security Methods

var oOptions = {
bAllowPermGroups: true,
bPlaintextMetadata: false,
cTitle: "Encrypt and Email",
cNote: "Select recipients",
bAllowImportFromFile: false,
bRequireEncryptionCert: true,
bRequireEmail: true
}i
var groupArray = security.chooseRecipientsDialog(oOptions) ;
console.println("Full name = "+ groupArray [0] .userEntities[0] .fullName) ;

Example 2

Get a list of recipients for which to encrypt data and then possibly email the document

once done.

var oOptions = { bAllowPermGroups: false,
cNote: "Select the list of recipients. "
+ "Each person must have both an email address and a certificate.",
bRequireEmail: true,
bUserCert: true
}i
var oGroups = security.chooseRecipientsDialog(oOptions) ;
// Display the list of recipients in an alert
// Build an email "to" maillist
var numCerts = oGroups [0] .userEntities.length;
var cMsg = "The document will be encrypted for the following:\n";
var maillist = new Array;
for(var g=0; g<numCerts; ++g)
{
var ue = oGroups [0] .userEntities[g];
var oCert = ue.defaultEncryptCert;
if (oCert == null)
oCert = ue.certificates|[0];
cMsg += oCert.subjectCN + ", " + ue.email + "\n";
var oRDN = oCert.subjectDN;
if (ue.email)

{
}

else
if (oRDN.e)

{
}

maillist[g] = ue.email;

maillist [g] = ORDN.e;

}

var result = app.alert(cMsg);

Example 3

List all the entries in an array of groups

Acrobat JavaScript Scripting Reference

321

- Acrobat JavaScript Scripting Reference
Security Methods

var groups = security.chooseRecipientsDialog(oOptions) ;
for(g in groups) {
console.println("Group No. " + g);
// Permissions
var perms = groups [g] .permissions;
console.println("Permissions:");
for(p in perms) console.println(p + " = " + eval("perms." +p));
// User Entities
for(u in groups[i] .userEntities) {
var user = groups [g] .userEntities[u];
console.println("User No. " + u);
for(i in user) console.println(i + " = " + eval("user." +i));

}

getHandler
5.0 ORKX)

Obtains a SecurityHandler Object. The caller can create as many new engines as desired
and each call to getHandler creates a new engine; however, there is only one Ul engine.

NOTE: (Security@)z This method is available from batch, console, app initialization and
menu events. It is also available in the Adobe Reader

Parameters
cName The language independent name of the security handler, as returned
by the handlers property.
bUIEngine (optional) If true, the method returns the existing security handler
instance that is associated with the Acrobat user interface (so that, for
example, a user can log in via the user interface). If false (the
default), returns a new engine.
Returns
The SecurityHandler Object specified by cName. If the handler is not present, returns a
null object.
Example

This code selects the Adobe.PPKLite SecurityHandler.

// validate signatures on open
security.validateSignaturesOnOpen = true;

// list all available signature handlers

var a = security.handlers;

for (var i = 0; i < a.length; i++)
console.println("a["+i+"] = "+al[il);

322 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Security Methods

// use "Adobe.PPKLite" handler engine for the UI

var ppklite = security.getHandler ("Adobe.PPKLite", true);
// login

ppklite.login ("dps017", "/C/profiles/DPSmith.pfx");

See also the example following signatureSign for a continuation of this example.

exportToFile

6.0 ©| O

Exports a Certificate Object to a local disk as a raw certificate file.

Note: (Secuirty ®): Data being written must be data for a valid certificate; arbitrary data
types cannot be written. This method will not overwrite an existing file.

Parameters
oObject The Certificate Object that is to be exported to disk.
cDIPath The device-independent save path.
NoTe: (Secuirty ®): The parameter cDIPath must be Safe Path and
must end with the extension . cer.
Returns

The path of the file that was written, if successful.

Example

var outPath = security.exportToFile (oCert, "/c/outCert.cer");

importFromFile

6.0 ORI X)

Reads a raw data file and returns the data as an object with a type specified by cType. The
file being imported must be a valid certificate.

Parameters
cType The type of object to be returned by this method. The only supported
type is "Certificate" .
cDIPath (optional) When bUI is f£alse, this parameter is a required and

specifies the device-independent path to the file to be opened.
If bUT is true, this is the seed path used in the open dialog.

Acrobat JavaScript Scripting Reference 323

324

Acrobat JavaScript Scripting Reference
SecurityHandler Object

Returns

Example

bul (optional) true if the user should be prompted to select the file that
is to be imported. The default is false.
cMsg (optional) If bUT is true, the title to use in the open dialog. If cMsg is
not specified, the default titleis used for the dialog.
A Certificate Object.
var oMyCert = security.importFromFile ("Certificate", "/c/myCert.cer");

SecurityHandler Object

SecurityHandler objects are used to access security handler capabilities such as signatures,
encryption and directories. Different security handlers will have different properties and
methods. This section documents the full set of properties and methods that security
objects may have. Individual SecurityHandler objects may or may not implement these
properties and methods.

SecurityHandler objects can be obtained using the security.getHandler method.

The JavaScript interface for Adobe.PPKLite signatures was introduced in Acrobat 5.0, with
the remainder of the JavaScript interface being introduced in Acrobat 6.0. Prior to Acrobat
6.0 there was no support in Acrobat to enable JavaScript in third party security handlers.

Not all security handlers are JavaScript enabled. Not all JavaScript enabled handlers are
enabled for all security operations. Third party public key security handlers may support
JavaScript, but only if they use the new PubSec programming interface that was introduced
in Acrobat 6.0.

JavaScript enabled handlers provided by Adobe include: the Adobe.PPKLite security
handler, supporting signature and encryption; the Adobe.PPKMS security handler for the
Windows operating system supporting signatures, encryption and directory access
through the Microsoft Active Directory Scripting Interface (ADSI); and the Adobe.AAB security
handler providing a local address book and support for directory operations. Note that the
Standard security handler, used for password encryption of documents, is not JavaScript
enabled.

NoTe: (Security ®): SecurityHandler Objects can only be created using the
Security Object getHandler method. This method is available only for batch,
console, application init and menu exec, and is available in the Adobe Reader.

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
SecurityHandler Properties

SecurityHandler Properties

appearances

5.0 ®

An array containing the language-dependent names of the available user-configured
appearances for the specified security handler. Appearances are used to create the on-page
visual representation of a signature when signing a signature field. The name of an
appearance can be specified as a signature info object property when signing a signature
field using £ield.signatureSign.

Acrobat provides a standard signature appearance module that is used by Adobe signature
plug-ins and that can also be used by third party signature plug-ins. This standard signature
appearance module is pre-configured with one appearance and can be configured by users
to contain more appearances. The name of the one pre-configured appearance, called
Standard Text in the user interface, is not returned by this property.

If a security handler does not support selection of appearances then this property will
return null.

Type: Array Access:R.
digitallDs
6.0 S

This method returns the certificates that are associated with the currently selected Digital
IDs for this security handler.

Type: Object Access:R.

The return value is a generic object with the following properties:

Property Type Description

oEndUserSignCert Certificate Object The certificate that is associated with the
currently selected Digital IDs that is to be used
by this security handler object when signing.
The property is undefined if there is no current

selection.

Acrobat JavaScript Scripting Reference 325

- Acrobat JavaScript Scripting Reference
SecurityHandler Properties

Property Type Description

oEndUserCryptCert Certificate Object The certificate that is associated with the
currently selected Digital IDs that is to be used
when encrypting a document with this
security handler object. The property is
undefined if there is no current selection.

certs Array of An array of certificates corresponding to the
Certificate Objects list of all Digital IDs that are available for this
security handler object.

The Adobe.PPKLite security handler returns the list of all Digital IDs associated with the
currently accessed password-protected Digital ID file. This handler requires that the
Security Handler Object has gained access to a password-protected Digital ID file before
this property can return a value. Access is obtained either by logging in via the user
interface and using the Security Object getHandler method with bUIEngine equal
true, or by using the login method. Both oEndUserSignCert and
oEndUserCryptCert properties can be set using the user-interface, and then these
settings are stored in the Digital ID file. oEndUserSignCert can also be set using the login
method.

The Adobe.PPKMS handler returns all currently available Digital IDs in the Windows Digital
ID store. . Both oEndUserSignCert and oEndUserCryptCert properties can be set
using the user-interface. oEndUserSignCert can also be set using the login method.
This means that oEndUserCryptCert will only be returned when using a Security
Handler object that is obtained using the getHandler method with bUIEngine set to
true.

Example

var sh = security.getHandler("Adobe.PPKMS", true);
var ids = sh.digitallDs;

var oCert = ids.oEndUserSignCert;
security.exportToFile(oCert, "/c/MySigningCert.cer");

directories

6.0 ®

Returns an array of the available Directory Objects for this Security Handler. New Directory
Objects can be created using the newDirectory method.

Type: Array Access:R.

326 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
SecurityHandler Properties

directoryHandlers
6.0 S
Returns an array containing the language independent names of the available directory
handlers for the specified security handler. As an example, the Adobe.PPKMS security
handler has a directory handler named Adobe.PPKMS.ADSI that supports queries using the
Microsoft Active Directory Script Interface (ADSI). Valid directory handler names are required
when activating a new Directory Object using its info property.
Type: Array Access:R.
isLoggedin
5.0 S
Returns true if currently logged into this SecurityHandler Object. See the login
method.
Different security handlers will have their own rules for determining the value of this
property. The Adobe.PPKLite handler will return trueif a user is logged in to a profile file
(also called credential file, implemented as a PKCS#12 file). Adobe.PPKMS will always return
true
Type: Boolean Access:R.
Example
var ppklite = security.getHandler ("Adobe.PPKLite", true);
console.println("Is logged in = " + ppklite.isLoggedIn); // false
ppklite.login("dps017", "/C/signatures/DPSmith.pfx");
console.println("Is logged in = " + ppklite.isLoggedIn); // true
loginName
5.0 ®

The name associated with the actively selected signing Digital ID for the security handler.
This may require that the Login method be called in order to select a signing credential.
The return value is null if a signing credential is not selected or if the security handler
does not support this property.

Type: String Access: R.

Acrobat JavaScript Scripting Reference 327

- Acrobat JavaScript Scripting Reference
SecurityHandler Properties

loginPath
5.0 S

The device-independent path to the user’s profile file used to login to the security handler.
The return value is null if no one is logged in, if the security handler does not support this
property, or if this property is irrelevant for the currently logged in user.

Type: String Access:R.

name

5.0 ®

The language-independent name of the security handler. Example values for the Default
Certificate, Windows Certificate, and Entrust Security Handlers are Adobe.PPKLite,
Adobe.PPKMS, and Entrust.PPKEF. All security handlers must support this property.

Type: String Access:R.

signAuthor
6.0 ®

Whether the security handler is capable of generating certified documents. A certified
document is a document that is signed with both a byte range signature and an object
signature. Object signatures are generated by walking the object tree of the document and
are used to detect and prevent modifications to a document. Refer to the mdp property of
the Signaturelnfo Object for details regarding modification detection and prevention
(MDP) settings.

Type: Boolean Access:R.
signFDF
6.0 S

Indicates that the security handler is capable of signing FDF files.

Type: Boolean Access:R.

328 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
SecurityHandler Methods

signinvisible

5.0 S

Whether the security handler is capable of generating invisible signatures.

Type: Boolean Access:R.

signValidate
6.0 ®

Indicates whether the security handler is capable of validating signatures.

Type: Boolean Access:R.
signVisible
5.0 S

Whether the security handler is capable of generating visible signatures.

Type: Boolean Access:R.

uiName

5.0 S

The language-dependent string for the security handler. This string is suitable for user
interfaces. All security handlers must support this property.

Type: String Access: R.

SecurityHandler Methods

login

5.0 S

This method provides a mechanism by which Digital IDs can be accessed and selected for a
particular Security Handler. Parameters tend to be specific to a particular handler. The
behaviour for Adobe.PPKLite and Adobe.PPKMS handlers is specified below.

Acrobat JavaScript Scripting Reference 329

- Acrobat JavaScript Scripting Reference
SecurityHandler Methods

The parameters cPassword and cDIPath for backward compatibility, or included as
properties of the oParams object, which is the preferred calling convention beginning in

Acrobat 6.0.

See also logout, newUser, and loginName.

Parameters

cPassword

cDIPath

oParams

bUT

(optional) The password necessary to access the password-protected
Digital ID. This parameter is supported by Adobe.PPKLite for accessing
Digital ID files.

(optional) A device independent path to the password-protected
Digital ID file. This parameter is supported by Adobe.PPKLite.

Nore: (Version 6.0) When logging , the user’s digital signature profile
must be a . pfxfile, notan . apf, as in prior versions of
Acrobat. To convertan . apf profile to the new .pfx type, use
the Ul (Advanced > Manage Digital IDs > My Digital ID Files
> Select My Digitial ID File) to import the . apf profile.

(optional, version 6.0) A LoginParameters Generic Object with
parameters that are specific to a particular SecurityHandler Object.
The common fields in this object are described below. These fields
include the cDIPathand cPassword values, thus allowing the
parameter list to be expressed in different ways.

(optional, version 6.0) Set to true if itis desired that user interface be
used to log the user in. This attribute should be supported by all
security handlers that support this method.

Returns

Returns trueif the login succeeded, £alse otherwise.

LoginParameters Generic Object

This generic JS object contains parameters for the 1login method. It has the following

properties:

Property

Type Description

cDIPath

String The path to afile that contains the Digital ID. This file
is normally password protected. Supported by

Adobe.PPKLite security handler.

330

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
SecurityHandler Methods

Property Type Description

cPassword String A password that is used to authenticate the user.
This password may used to access a password-
protected Digital ID file. Supported by
Adobe.PPKLite security handler. Note that Acrobat
does not guarantee that this password is obfuscated
in memory.

oEndUserSignCert generic Selects a Digital ID for the purpose of performing
object end user signing. The value of this property is a

Certificate Object, or generic object with the same
property names as a Certificate Object, defining the
certificate that is being selected. It may or may not
be necessary to call this method for a particular
handler. For example, if logged in to a PKCS#12 file
containing one signing Digital ID with
Adobe.PPKLite, a signing credential will not need to
be selected. All security handlers must be able to
process the binary and SHATHash properties of this
object. This object can be empty if bUT is true.

cMsg String A message to display in the login dialog, if bUT is
true.

Example 1

// Use "Adobe.PPKLite" Security Handler Object for the UI

var ppklite = security.getHandler("Adobe.PPKLite", true);

var oParams = { cPassword: "dps017", cDIPath: "/C/DPSmith.pfx" }
ppklite.login(oParams) ;

<ol make a signature field and sign it >
ppklite.logout () ;

// PPKLite - Use UI to select a credential, when already logged in
ppklite.login (
{ oparams:
{ oEndUserSignCert: {},
cMsg: "Select your Digital ID" },
bUI : true

Yoy

// PPKLite - Login and select signing credential
var oCert = { SHAlHash: "00000000" };
ppklite.login (
{ oparams:
{ cDIPath: "/C/test/DPSmith.pfx",

cPassword: "dps017",

oEndUserSignCert: oCert,

cMsg: "Select your Digital ID"

Acrobat JavaScript Scripting Reference 331

- Acrobat JavaScript Scripting Reference
SecurityHandler Methods

Example 2

// Use "Adobe.PPKMS" Security Handler Object
var ppkms = security.getHandler ("Adobe.PPKMS") ;

// Select credential to use when signing

var oCert = myCerts[0];
ppkms.login({ oParams: { oEndUserSignCert: oCert } });

See signatureSign for details on signing a PDF document.

logout

5.0 S

Logs out for the SecurityHandler Object. This method is used by Adobe.PPKLite, not
by Adobe.PPKMS.

Also see the 1login method.

Parameters

None

Returns

Beginning in Acrobat 6.0, returns true if the logout succeeded, false otherwise.
Previous Acrobat releases did not generate a return value.

newDirectory

60 | ®|®

Returns a new Directory Object. The directory object must be activated using its info
property before it is marked for persistance and can be used for searches. Existing directory
objects can be discovered using the directories property.

Parameters

None

Returns

Returns a new Directory Object

332 Acrobat JavaScript Scripting Reference

newUser

5.0 OIKX)

Acrobat JavaScript Scripting Reference
SecurityHandler Methods

This method supports enrollment with Adobe.PPKLite and Adobe.PPKMS security handlers
by creating a new self-sign credential.

NoTe: (Security ®): This method will not allow the user to overwrite an existing file.

Parameters

cPassword

cDIPath

ORDN

oCPS

bul

(optional) The password necessary to access the password-protected
Digital ID file. This parameter is ignored by Adobe.PPKMS.

(optional) The device-independent path to the password-protected
Digital ID file. This parameter is ignored by Adobe.PPKMS.

NoTe: (Security ®): Beginning with Acrobat 6.0, the parameter
cDIPath must be Safe Path and end with the extension .pfx.

(optional) The relative distinguished name (RDN) as an RDN Generic
Object containing the issuer or subject name for a certificate. The only
required field is cn. If the country ¢ is provided, it must be two
characters, using the ISO 3166 standard (for example, 'US').

(optional, version 6.0) A generic object containing certificate policy
information that will be embedded in the Certificate Policy extension
of the certificate. The object must contain property oid, which
indicates the certificate policy object identifier. The other properties
which may be present are url and (user) notice. The urlis a URL
that points to detailed information about the policy under which the
certificate has been issued and user noticeis a abridged version of
the same, embedded in the certificate.

(optional, version 6.0) When true, the user interface can be used to
enroll. This parameter is supported by all security handlers that
support this method.

Returns

true if successful, throws an exception if not successful.

Example

// Create a new PPKLite self-sign credential (Acrobat 5.0 syntax)

var ppklite

security.getHandler ("Adobe.PPKLite") ;

var ORDN = { cn: "Fred NewUser", c: "US" };

var oCPS
url:

notice:

Acrobat JavaScript Scripting Reference

{oid: "1.2.3.4.5",
"http://www.myca.com/mycps.html",
"This is a self generated certificate, hence the "
+ "recipient must verify it’s authenticity through an out "

- Acrobat JavaScript Scripting Reference
SecurityHandler Methods

+ "of band mechansism" };
ppklite.newUser("testtest", "/d/temp/FredNewUser.pfx", oRDN, oCPS) ;

// Alternate generic object syntax, allowing additional parameters
var oParams = {

cPassword : "myPassword",

cDIPath : "/d/temp/FredNewUser.pfx",

ORDN : ORDN,

oCPS : oCPS,

bUI : false
}i

ppklite.newUser (oParams) ;

// Use a certificate from an existing signed, field to create the RDN
var £ = this.getField("mySignature") ;

f.signaturevValidate() ;

var sigInfo = f.signatureInfo();

var certs = sigInfo.certificates;

var oSubjectDN = certs[0] .subjectDN;

ppklite.newUser ({
cPassword: "dps017",
cDIPath: "/c/temp/DPSmith.pfx",
ORDN: oSubjectDN

b
setPasswordTimeout

5.0 ORKX)

Sets the number of seconds after which password should expire between signatures. This
method is only supported by the Adobe.PPKLite security handler. For this handler the
default timeout value for a new user is 0 (password always required).

Parameters
cPassword The password needed to set the timeout value.
iTimeout The timeout value, in seconds. Set to 0 for always expire (that is,
password always required). Set to 0x7FFFFFFF for never expire.
Returns

Throws an exception if the user has not logged in to the Adobe.PPKLite Security Handler, or
unsuccessful for any other reason.

334 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Signaturelnfo Object

Example

This example logs in to the PPKLite security handler and sets the password timeout to 30
seconds. If the password timeout has expired—30 seconds in this example—the signer
must provide a password. The password is not necessary if the password has not timed out.

var ppklite= security.getHandler ("Adobe.PPKLite");
ppklite.login("dps017", "/d/profiles/DPSmith.pfx");
ppklite.setPasswordTimeout ("dps017", 30);

Signaturelnfo Object

A generic JS object that contains the properties of a digital signature. Some properties are
supported by all handlers, and additional properties can be supported. Writable properties
can be specified when signing the object.

This object is returned by £ield.signatureInfo and FDF.signatureValidate,
and passed to £ield.signatureSign and FDF.signatureSign.

Signaturelnfo Object properties

All handlers define the following properties:

Signaturelnfo Object properties

Property Type Access Version Description

buildInfo Object R 6.0 An object containing software build
and version information for the
signature. The format of this object
is not described in this document. An
Acrobat technote may be produced
that contains this information. The
subject of this technote will be

signature build properties dictionary.

date Date R 5.0 The date and time that the signature
was created, in PDF date format.

Acrobat JavaScript Scripting Reference 335

- Acrobat JavaScript Scripting Reference
Signaturelnfo Object properties

Signaturelnfo Object properties

Property Type Access Version Description

handlerName String R 5.0 The language independent name of
the security handler that was
specified as the Filter attribute in the
signature dictionary. This is usually
the name of the security handler that
created the signature, but can also be
the name of the security handler that
the creator desires to be used when
validating the signature.

handlerUserName String R 5.0 The language independent name
corresponding to security handler
specified by handlerName. This is
only available when the named
security handler is available.

handlerUIName String R 5.0 The language dependent name
corresponding to security handler
specified by handlerName. This is
only available when the named
security handler is available.

location String R/W 5.0 Optional user specified location when
signing. This can be a physical
location (such as a city) or hostname.

mdp String R/W 6.0 The Modification Detection and
Prevention (MDP) setting that was
used to sign the field or FDF Object
being read, or the MDP setting to use
when signing. Values are:

"allowNone"
"allowAll"

"default"
"defaultAndComments"

See Modification Detection and
Prevention (MDP) Values for details.
"allowAll" the default, means
that MDP is not used for the
signature, resulting in this not being
an author signature.

name String R 5.0 Name of the user that created the
signature.

336 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

Signaturelnfo Object properties -

Signaturelnfo Object properties

Property

Type Access

Version

Description

numFieldsAltered

numFieldsFilledIn

numPagesAltered

numRevisions

reasomn

revision

status

statusText

Number R

Number R

Number R

Number R

String R/W
Number R

Number R

String R

5.0

5.0

5.0

5.0

5.0
5.0

5.0

5.0

Number of fields altered between the
previous signature and this signature.
Used only for signature fields.

Number of fields filled-in between
the previous signature and this
signature. Used only for signature
fields.

Number of pages altered between
the previous signature and this
signature. Used only for signature
fields.

The number of revisions in the
document. Used only for signature
fields.

User specified reason for signing.

The signature revision to which this
signature field corresponds. Used
only for signature fields.

The validity status of the signature,
computed during the last call to the
signatureValidate.
Values are:
-1: Not a signature field
0: Signature is blank
1: Unknown status
2: Signature is invalid
3: Signature of document is valid,
identity of signer could not be
verified
4: Signature of document is valid
and identity of signer is valid.

The language dependent text string,
suitable for user display, denoting the
signature validity status, computed
during the last call to the
signatureValidate.

Acrobat JavaScript Scripting Reference

337

- Acrobat JavaScript Scripting Reference
Signaturelnfo Object properties

Signaturelnfo Object properties

Property Type Access Version Description

subFilter String R/W 6.0 The format to use when signing.
Consult the PDF Reference for a
complete list of supported values.
The known values used for public key
signatures include adbe.pkcs7.shat,
adbe.pkcs7.detached, and
adbe.x509.rsa_shal. Itis important
that the caller know that a particular
signature handler can support

this format.

verifyHandlerName String R 6.0 The language independent name of
the security handler that was used to
validate this signature. This will be
null if the signature has not been
validated, that is, if the status
property has a value of 1

verifyHandlerUIName String R 6.0 The language dependent name
corresponding to security handler
specified by verifyHandlerName. This
will be null if the signature has not
been validated, that is, if the status
property has a value of 1.

Signaturelnfo Object Public Key Security Handler Properties

Public key security handlers may define the following additional properties:

Signaturelnfo Object Public Key Security Handler Properties

Property Type Access Version Description

appearance String W 5.0 The name of the user-configured appearance
to use when signing this field. PPKLite and
PPKMS use the standard appearance handler,
and in this situation, the appearance names
can be found in the signature appearance
configuration dialog of the user interface
(menu Edit > Preferences > Digital Signatures
in Acrobat 6.0). The default, when not
specified, is to use the Standard Text
appearance. Used only for visible signature
fields.

338 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
Signaturelnfo Object properties

Signaturelnfo Object Public Key Security Handler Properties

Property Type Access Version Description

certificates Array R 5.0 Array containing a hierarchy of certificates
that identify the signer. The first element in
the array is the signer’s certificate, and
subsequent elements include the chain of
certificates up to the certificate authority that
issued the signer’s certificate. For self-signed
certificates this array will contain only one
entry.

contactInfo String R/W 5.0 User specified contact information for
determining trust. For example, a telephone
number that recipients of a document can use
to contact the author to establish trust. This is
not recommended for a scalable solution for
establishing trust.

byteRange Array R 6.0 An array of numbers indicating the bytes that
are covered by this signature.

docValidity Number R 6.0 The validity status of the document byte
range digest portion of the signature,
computed during the last call to
signatureValidate. All PDF document
signature field signatures include a byte range

digest.
See Validity Values for details of the return
codes.

idPrivValidity Number R 6.0 Returns the validity of the identity of the

signer. This value is specific to the handler. See
Private Validity Values for values supported by
the Adobe.PPKLite and Adobe.PPKMS handlers.

This value is 0 unless the signature has been

validated, that is, if the status property has a
value of 1.

Acrobat JavaScript Scripting Reference 339

- Acrobat JavaScript Scripting Reference
Signaturelnfo Object properties

Signaturelnfo Object Public Key Security Handler Properties

Property Type Access Version Description

idvalidity Number R 6.0 Returns the validity of the identity of the
signer as number. Values are:

-1: Not a signature field

0: Signature is blank

1: Unknown status

2: Signature is invalid

3: Signature of document is valid, identity
of signer could not be verified

4: Signature of document is valid and
identity of signer is valid.

objVvalidity Number R 6.0 The validity status of the object digest portion
of the signature, computed during the last call
to signatureValidate. For PDF documents,
signature field author signatures and
document-level application rights signatures
include object digests. All FDF files are signed
using object digests.
See Validity Values for details of the return
codes.

trustFlags Number R 6.0 The bits in this number indicate what the
signer is trusted for. The value is valid only
when the value of the status property is 4.
These trust settings are derived from trust
setting in the recipient’s trust database, for
example the Acrobat Address Book
(Adobe.AAB). Bit assignments are:
1- trusted for signatures
2- trusted for certifying documents

3- trusted for dynamic content such as
multimedia

4- Adobe internal use

5-the javascript in the PDF file is trusted to
operate outside the normal PDF restrictions

password String W 5.0 Password required as authentication when
accessing a private key that is to be used for
signing. This may or may not be required,
dependent on the policies of the security
handler.

340 Acrobat JavaScript Scripting Reference

Validity Values

Acrobat JavaScript Scripting Reference -
Signaturelnfo Object properties

The following codes are returned by the docValidity and objVvalidity (See
Signaturelnfo Object Public Key Security Handler Properties), allowing a finer granularity of
understanding of the validity of the signature then the status property.

Validity Values
Status Code

Description

kDSSigValUnknown
kDSSigValUnknownTrouble

kDSSigValUnknownBytesNotReady

kDSSigValInvalidTrouble

kDSSigValInvalidTrouble

kDSSigValJustSigned
kDSSigValFalse
kDSSigValTrue

Validity not yet determined.

Validity could not be determined because of errors
encountered during the validation process.

Validity could not be determined because all bytes are
not available, for example when viewing a file in a web
browser. Even when bytes are notimmediately available,
this value may not be returned if the underlying
implementation blocks when bytes or not ready. Adobe
makes no commitment regarding whether validation
checks will block or not block, however the
implementation in Acrobat 6.0 will block when
validating docValidity and not block when validating
objValidity.

Validity for this digest was not computed because there
were errors in the formatting or information contained
in this signature. There is sufficient evidence to conclude
that the signature is invalid.

Validity for this digest is not used (e.g., no doc validity if
no byte range).

The signature was just signed, so implicitly valid.
The digest or validity is invalid

The digest or validity is valid

Private Validity Values

Verification of the validity of the signer’s identity is specific to the handler that is being used
to validate the identity. This value may contain useful information regarding an identity.
The identity is returned in the 1idPrivValidity property. Values for Adobe.PPKMS and

Acrobat JavaScript Scripting Reference

341

342

Acrobat JavaScript Scripting Reference

Signaturelnfo Object properties

Adobe.PPKLite security handlers are shown here. This value is also mapped to an
idvalidity value thatis common across all handlers.

Private Validity Values

idValidity Security
Status Code Mapping Handler Description
kIdUnknown 1 (unknown) PPKMS, Validity not yet determined.
PPKLite
kIdTrouble 1 (unknown) PPKMS, Could not determine validity because of
PPKLite errors, for example internal errors, or
could not build the chain, or could not
check basic policy.
kIdInvalid 2 (invalid) PPKMS, Certificate is invalid: not time nested,
PPKLite invalid signature, invalid/unsupported
constraints, invalid extensions, chain is
cyclic.
kIdNotTimeValid 2 (invalid) PPKMS, Certificate is outside its time window
PPKLite (too early, too late).
kIdRevoked 2 (invalid) PPKMS Certificate has been revoked.
kIdUntrustedRoot 1 (unknown) PPKMS, Certificate has an untrusted root
PPKLite certificate.
kIdBrokenChain 2 (invalid) PPKMS, Could not build a certificate chain up to
PPKLite a self-signed root certificate.
kIdPathLenConstraint 2 (invalid) PPKLite Certificate chain has exceeded the
specified length restriction. The
restriction was specified in Basic
Constraints extension of one of the
certificates in the chain.
kIdCriticalExtension 1 (unknown) PPKMS One of the certificates in the chain has
an unrecognized critical extension.
kIdJustSigned 4 (valid) PPKMS, Just signed by user (similar to kidIsSelf)
PPKLite
kIdAssumedvValid 3 (idunknown) PPKMS Certificate is valid to a trusted root, but
revocation could not be checked and
was not required.
kIdIsSelf 4 (valid) PPKMS, Certificate is my credential (no further
PPKLite checking was done).

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

SOAP Object
Private Validity Values
idValidity Security
Status Code Mapping Handler Description
kIdvalid 4 (valid) PPKMS, Certificate is valid to a trusted root (in

PPKLite the Windows or Acrobat Address Book).

kIdRevocationUnknown ? PPKMS, Certificate is valid to a trusted root, but
PPKLite revocation could not be checked and
was required by the user.

Modification Detection and Prevention (MDP) Values

Modification detection and prevention (MDP) settings control what changes are allowed to
occur in a document before the signature becomes invalid. Changes are recorded outside
of the byte range, for signature fields, and can include changes that have been
incrementally saved as part of the document or changes that have occurred in memory
between the time that a document is opened and when the signature is validated. MDP
settings may only be applied to the first signature in a document. Use of MDP will result in
an author signature. MDP has one of the following four values:

allowAll: Allow all changes to a document without any of these changes invalidating
the signature. This results in MDP not being used for the signature. This was the
behavior for Acrobat 4.0 through 5.1.

allowNone: Do not allow any changes to the document without invalidating the
signature. Note that this will also lock down the author’s signature.

default: Allow form field fill-in if form fields are present in the document, otherwise do
not allow any changes to the document without invalidating the signature.

defaultAndComments: Allow form field fill-in if form fields are present in the document,
and allow annotations (comments) to be added, deleted or modified, otherwise do not
allow any changes to the document without invalidating the signature. Note that
annotations can be used to obscure portions of a document and thereby affect the
visual presentation of the document.

SOAP Object

The SOAP object allows remote procedure calls to be made to a remote server from
JavaScript. The SOAP 1.1 protocol (see http://www.w3.0rg/TR/SOAP/ is used to marshall
JavaScript parameters to a remote procedure call (either synchronously or asynchronously)
and to unmarshall the result as a JavaScript object. The SOAP object also has the ability to
communicate with Web Services described by the Web Services Description Language
(WSDL—see http://www.w3.org/TR/wsdl).

Acrobat JavaScript Scripting Reference 343

- Acrobat JavaScript Scripting Reference
SOAP Properties

Note: SOAP methods connect, request and response are available only for
documents open in Acrobat Pro and Acrobat Std., and for documents with Form
Export Rights(e) open in Adobe Reader 6.0.

SOAP Properties

wireDump

6.0

If true, synchronous SOAP requests will cause the XML Request and Response to be
dumped to the JavaScript Console. This is useful for debugging SOAP problems.

Type: Boolean Access: R/W.

SOAP Methods

connect

6.0 Q

Takes the URL of a WSDL document (cURL) and converts it to a JavaScript object with
callable methods corresponding to the web service.

The parameters to the method calls and the return values obey the rules specified for the

SOAP.request method.
Parameters
cURL The URL of a WSDL document. The cURL parameter must be an HTTP

or HTTPS URL.

Returns

The result value from SOAP. connect is a WSDL Service Proxy object with a JavaScript
method corresponding to each operation in the WSDL document provided at the URL.

The parameters required for the method depend on the WSDL operation you are calling
and how the operation encodes its parameters.

If the WSDL operation is using the SOAP RPC encoding (as described in Section 7 of the
SOAP 1.1 Specification) then the arguments to the service method are the same as the
parameter order in the WSDL document.

344

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
SOAP Methods

If the WSDL service is using the SOAP document/literal encoding then the function will
have a single argument indicating the request message. The argument may be a JavaScript
object literal describing the message or it may be either a string or a ReadStream Object
with an XML fragment describing the message.

The return value of the service method will correspond to the return value of the WSDL
operation.
Exceptions
SOAP Faults will cause a SOAPError exception to be thrown. If there is a problem at the
networking level, such as an unavailable endpoint, a NetworkError will be thrown.
Example

A service WSDL Document URL is needed. These can be obtained from the "Round 2
Interop Services - using SOAP 1.2" section at the following URL:
http://www.whitemesa.com/interop.htm.

var cURL = <get a URL for this service from
http://www.whitemesa.com/interop.htm>;

// Connect to the test service
var service = SOAP.connect (cURL) ;

// Print out the methods this service supports to the console
for(var 1 in service) console.println(i);

var cTestString = "This is my test string";

// Call the echoString service -- it is an RPC Encoded method
var result = service.echoString(cTestString) ;

// This should be the same as cTestString
console.println(result + " == " + cTestString) ;

// Call the echolnteger service -- JavaScript doesn't support integers
// so we make our own integer object.
var oTestInt =

soapType: "xsd:int",

soapValue: "10"

var result = service.echoInteger (oTestInt) ;

// This should be the same as oTestInt.soapValue

console.println(result + " == " + oTestInt.soapValue) ;
This produces the following output:

echoBase64
echoBoolean
echoDate
echoDecimal

Acrobat JavaScript Scripting Reference 345

346

Acrobat JavaScript Scripting Reference
SOAP Methods

echoFloat
echoFloatArray
echoHexBinary
echoInteger
echoIntegerArray
echoPolyMorph
echoPolyMorphArray
echoPolyMorphStruct
echoString
echoStringArray
echoStruct
echoStructArray
echoVoid

This is my test string == This is my test string
10 == 10

request

6.0 F)

Initiates a remote procedure call (RPC) against the SOAP HTTP endpoint.

Parameters

cURL The URL for a SOAP HTTP Endpoint.

oRequest An object literal that specifies the remote procedure name and the
parameters to call .

OAsync (optional) An object literal indicating that the method invocation will
occur asynchronously.

cAction (optional) The SOAPAction header for the method.

bEncoded (optional) Encode the request using the SOAP Encoding described in
Section 5 of the SOAP 1.1 specification (the default is to use SOAP
Encoding)

cNamespace (optional) A namespace for the message schema when not using the
SOAP Encoding (the bEncoded flag is £alse). The default is to have
Nno namespace.

See the Additional Notes on the Parameters of SOAP.request.

Returns

An object literal. See the Additional Notes on the Return Value

Exceptions

SOAPError, NetworkError

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
SOAP Methods

SOAP Faults will cause a SOAPError to be thrown. If there is a problem at the networking
level, such as an unavailable endpoint, a NetworkError will be thrown.

Additional Notes on the Parameters of SOAP.request

e CURLis the URL for a SOAP HTTP Endpoint. The URL method must be one of
- http—Connect to a server at a URIl on a port. For example,
http://serverName:portNumber/URI
- https—Connect to a secured (SSL) server at a URI on a port.
For example, https://serverName:portNumber/URI

e ORequest is an object literal that specifies the remote procedure name and the
parameters to call. The object literal uses the fully qualified method name of the remote
procedure as the key. The namespace should be separated from the method name by a
colon; for example, if the namespace for the method is http://mydomain/methods and
the method name is echoString () then the fully qualified name would be
http://mydomain/methods:echoString. The value of this key is an object literal, each key
is a parameter of the method, and the value of each key is the value of the
corresponding parameter of the method. For example:

ORequest: {
"http://soapinterop.org/:echoString": {inputString: "Echo!"}
}

When passing parameters to a remote procedure, JavaScript types are bound to SOAP
types automatically as listed in the table:

JavaScript Type SOAP Type

String xsd:string

Number xsd:float

Date xsd:dateTime
Boolean xsd:boolean
ReadStream Object SOAP-ENC:base64
Array SOAP-ENC:Array
Other No type information

NoTe: The xsd namespace refers to the XML Schema Datatypes namespace
http://www.w3.0rg/2001/XMLSchema). The SOAP-ENC namespace refers to the
SOAP Encoding namespace http://schemas.xmlsoap.org/soap/encoding/).

To pass parameters with a non-supported type, the parameter should be passed as an
object literal. The keys and description of this object literal follow:

- soapType: Thisis the SOAP Type that will be used for the value when generating the
SOAP message; this is useful when a datatype is needed other than the automatic

Acrobat JavaScript Scripting Reference 347

- Acrobat JavaScript Scripting Reference
SOAP Methods

datatype binding described above. The type should be namespace qualified using
the <namespace>: <type> notation, for example

http://mydomain/types :myType
However the xsd (the XMLSchema Datatypes namespace), xsi (the XMLSchema
Instance namespace) and SOAP-ENC (the SOAP Encoding namespace) namespaces

are implicitly defined in the SOAP message so the soapType can use these, as in
xsd: int for the XMLSchema Datatype Integer type.

- soapValue: This is the value that will be used when generating the SOAP message.
It can be a string or a ReadStream Object. The soapValue is passed unescaped (i.e.,
will not be XML Entity escaped); for example "<" is not converted to "&It;" in the XML
Message. Consequently the soapValue parameter can be a raw XML fragment
which will be passed to the XML Message.

- soapName: This is the element name that will be used when generating the SOAP
message instead of the key name in the object literal.

For example, integers are not supported in JavaScript, but an integer parameter to a
SOAP method can be constructed as follows:
var oIntParameter = {
soapType: "xsd:int",
soapValue: "1"

i
Later, the oRequest parameter for the SOAP . request method might be
oRequest : {

"http://socapinterop.org/:echoInteger":
inputInteger: oIntParameter

}

The Example that follows the description of the SOAP . request illustrates this
technique.

e The oAsync object literal must have a function called response which will be called
with two parameters (oResult and cURI) when the response returns. oResult is
the same result object that would have been returned from the request call if it was
called synchronously. cURT is the URI of the endpoint that the request was made to.

e cActionisthe SOAPAction header for the method. The SOAPAction is a URN written to
an HTTP header used by firewalls and servers to filter SOAP requests. The WSDL file for
the SOAP service or the SOAP service description will usually describe the SOAPAction
header required (if any).

ReadStream Object

A ReadStreamObiject is an object literal that represents a stream of data. The object
literal should contain a function called read, which takes the form:

var readSteamObject = {
read: function(nBytes) {...};
}

348 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
SOAP Methods

The read () method takes the number of bytes to read and returns a hex encoded string
with the data from the stream. The read () method returns a zero length string to indicate
end of stream. Alternatively, you can use the SOAP. streamFromString function to
create a read stream.

Additional Notes on the Return Value

If there is no oAsync parameter (that is, a synchronous request) then request returns
the result from the SOAP method. Otherwise, nothing is returned. The SOAP types in the
result are mapped to JavaScript types as follows:

SOAP Type JavaScript Type
xsd:string String
xsd:integer Number
xsd:float Number
xsd:dateTime Date
xsd:boolean Boolean
xsd:hexBinary ReadStream Object
xsd:base64Binary ReadStream Object
SOAP-ENC:base64 ReadStream Object
SOAP-ENC:Array Array
No Type Information String

Example

A service WSDL Document URL is needed. These can be obtained from the "Round 2
Interop Services - using SOAP 1.2" section at the following URL:
http://www.whitemesa.com/interop.htm.

var cURL = <get a URL for this service from
http://www.whitemesa.com/interop. htm>;

var cTestString = "This is my test string";

// Call the echoString SOAP method -- it is an RPC Encoded method
var response = SOAP.request (

{

CURL: cURL,
oRequest: {
"http://soapinterop.org/:echoString":
inputString: cTestString
}

b

cAction: "http://socapinterop.org/"

Acrobat JavaScript Scripting Reference 349

350

Acrobat JavaScript Scripting Reference

SOAP Methods

I3

var

result =

response ["http://soapinterop.org/:echoStringResponse"] ["return"] ;

// This should be the same as cTestString

console.println(result + " == " + cTestString);

// Call the echoInteger SOAP method -- JavaScript doesn't support

//

var

{

}i

var

b

var

integers so we make our own integer object.

oTestInt =

soapType: "xsd:int",
soapValue: "10"

response = SOAP.request (

CURL: cURL,
oRequest:

"http://soapinterop.org/:echoInteger" :

inputInteger: oTestInt

}
b

cAction: "http://socapinterop.org/"

result =

response ["http://soapinterop.org/:echoIntegerResponse"] ["return"] ;

// This should be the same as oTestInt.soapValue

console.println(result + " == " + oTestInt.soapValue);

This produces the following output:

response

This is my test string == This is my test string

10

== 10

6.0

FJ

Behaves analogously to request, however no response is returned. This is useful for
sending a message when a reply is not required.

Acrobat JavaScript Scripting Reference

Parameters

Acrobat JavaScript Scripting Reference -
SOAP Methods

cURL

oRequest

cAction

bEncoded

cNamespace

The URL for a SOAP HTTP Endpoint.The URL method must be one of
e http—Connect to a server at a URI on a port. For example,
http://serverName:portNumber/URI
e https—Connect to a secured (SSL) server at a URI on a port.

For example, https://serverName:portNumber/URI

An object literal describing the request. It should be specified in the
same way as for the request () method.

(optional) The SOAPAction header for the method. The SOAPAction is
a URN written to an HTTP header used by firewalls and servers to filter
SOAP requests. The WSDL file for the SOAP service or the SOAP
service description will usually describe the SOAPAction header
required (if any).

(optional) Encode the request using the SOAP Encoding described in

Section 5 of the SOAP 1.1 specification (the default is to use SOAP
Encoding)

(optional) A namespace for the message schema when not using the
SOAP Encoding (the bEncoded flag is £alse). The default is to have
no namespace.

Returns

Boolean

Exceptions

If there is a problem at the networking level, such as an unavailable endpoint, a
NetworkError will be thrown.

Example

See the example that follows the SOAP . request method.

streamDecode

6.0

This function allows the oStream object to be decoded with the specified encoding type,
cEncoder. It returns a ReadStream Object (see request) which will have been decoded
appropriately. Typically this be would used to access data returned as part of a SOAP
method when it was encoded in Base64 or Hex encoding.

Acrobat JavaScript Scripting Reference

351

- Acrobat JavaScript Scripting Reference
SOAP Methods

Parameters
oStream A stream object to be decoded with the specified encoding type.
cEncoder Permissible values for this string are "hex" (for Hex encoded) and
"base64" (Base 64 encoded).
Returns

ReadStream Object

streamEncode

6.0

This function allows the oStream object to be encoded with the specified encoding type,
cEncoder. It returns a ReadStream Object (see request) which will have the appropriate

encoding applied. Typically this would used to pass data as part of a SOAP method when it
must be encoded in Base64 or Hex encoding.

Parameters
oStream A stream object to be encoded with the specified encoding type.
cEncoder Permissible values for this string are "hex" (for Hex encoded) and
"base64" (Base 64 encoded).
Returns

ReadStream Object

streamFromString

6.0

This function converts a string to a ReadStream Object (see request). Typically this would
be used to pass data as part of a SOAP method.

Parameters

cString The string to be converted

Returns

ReadStream Object

352

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
Sound Object

stringFromStream

6.0

This function converts a ReadStream Object (see request) to a string. Typically, this would
be used to examine the contents of a stream object returned as part of a response to a
SOAP method.

Parameters

oStream ReadStream Object to be converted.

Returns

String

Sound Object

5.0

This object is the representation of a sound that is stored in the document. The array of all
sound objects can be obtained from doc . sounds. See also doc methods getSound,
importSound, and deleteSound.

Sound Properties

name
The name associated with this sound object.
Type: String Access:R.
Example

console.println ("Dumping all sound objects in this document.");

var s = this.sounds;

for (var 1 = 0; 1 < this.sounds.length; i++)
console.println("Sound[" + i + "]=" + s[i] .name) ;

Acrobat JavaScript Scripting Reference 353

354

Acrobat JavaScript Scripting Reference
Sound Methods

Sound Methods

play
Plays the sound asynchronously.
Parameters
None
Returns
Nothing
pause
Pauses the currently playing sound. If the sound is already paused then the sound play is
resumed.
Parameters
None
Returns
Nothing
stop
Stops the currently playing sound.
Parameters
None
Returns
Nothing

Span Object

6.0

A span object is used to represent a length of text and its associated properties in a rich text
form field or annotation. The rich text value of a form field or annotation consists of an array
of span objects representing the text and formatting of the annotation. It is important to
note that the span objects are a copy of the rich text value of the field or annotation. Use
the field.richValue, event.richValue(and richChange, richChangeEx), or
annot.richContents to modify and reset the rich text value to update the field.

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

Span Properties

Span Properties

alignment
The horizontal alignment of the text. Alignment for a line of text is determined by the first

span on the line. The values of alignment are

left
center
right

The default value is 1eft.

Type: String Access: R/W.

The example following superscript illustrates the usage of alignment.

fontFamily

The font family used to draw the text. It is an array of family names to be searched for in
order. The first entry in the array is the font name of the font to use; the second entry is an
optional generic family name to use if an exact match of the first font is not found. The
generic family names are

symbol, serif, sans-serif, cursive, monospace, fantasy

The default generic family name is sans-serif.

Type: Array Access: R/W.

Example
Set the defaultStyle font family for a rich text field.
f = this.getField("Textl");
style = f.defaultStyle;

// if Courier Std is not found on the user’s system, use a monospace
style.fontFamily = ["Courier Std", "monospace"];
f.defaultStyle = style;

fontStretch

Specifies the normal, condensed or extended face from a font family to be used to draw the
text. The values of fontStretchare

ultra-condensed, extra-condensed, condensed, semi-condensed, normal,
semi-expanded, expanded, extra-expanded, ultra-expanded

The default value is normal.

Type: String Access: R/W.

Acrobat JavaScript Scripting Reference 355

356

Acrobat JavaScript Scripting Reference
Span Properties

fontStyle

Specifies the text is drawn with an italic or oblique font.
italic
normal

The default is normal.

Type: String Access: R/W.

fontWeight

text

The weight of the font used to draw the text. For the purposes of comparison, normal is

anything under 700 and bold is greater than or equal to 700. The values of fontWeight
are

100,200,300,400,500,600, 700,800, 900
The default value is 400.

Type: Number Access: R/W.

The text within the span.

Type: String Access: R/W.

The example following superscript illustrates the usage of text.

textColor

The RGB color to be used to draw the text. The value of textColor is a color array, see the
Color Object for a description of color array. The default color is black.

Type: Color Array Access: R/W.

The example following superscript illustrates the usage of textColor.

textSize

The point size of the text. The value of textSize can be any number between 0 and
32767 inclusive. A text size of zero means to use the largest point size that will allow all text
data to fit in the field’s rectangle.

The default text size is 12.0.

Type: Number Access: R/W.

The example following £ield.richValue illustrates the usage of textSize.

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

Span Properties

strikethrough

If strikethroughis true, the textis drawn with a strikethrough. The default is false.

Type: Boolean Access: R/W.

subscript

Specifies the text is subscript. If true, subscript textis drawn with a reduced point size and
a lowered baseline. The default is false.

Type: Boolean Access: R/W.

superscript

Specifies the text is superscript. If true, superscript text is drawn with a reduced point size
and a raised baseline. The default is false.

Type: Boolean Access: R/W.

Example

Write rich text to a rich text field using various properties. See field.richvValue for
more details and examples.

var f = this.getField("myRichField") ;

// need an array to hold the span objects
var spans = new Array () ;

// each span object is an object, so we must create one
spans [0] = new Object() ;

spans [0] .alignment = "center";

spans [0] .text = "The answer is x";

spans [1] = new Object() ;
spans [1] .text = "2/3";
spans [1] .superscript = true;

spans [2] = new Object() ;
spans [2] .superscript = false;
spans [2] .text = ". ";

spans [3] = new Object() ;
spans [3] .underline = true;

spans [3] .text = "Did you get it right?";
spans [3] .fontStyle = "italic";
spans [3] .textColor = color.red;

Acrobat JavaScript Scripting Reference 357

- Acrobat JavaScript Scripting Reference
Spell Object

// now assign our array of span objects to the field using
// field.richValue
f.richvalue = spans;
underline
If underlineis true, the textis underlined. The default is £alse.

Type: Boolean Access: R/W.

The example following superscript illustrates the usage of underline.

Spell Object
5.0 (X

This object allows users to check the spelling of Comments and Form Fields and other
spelling domains. To be able to use the spell object, the user must have installed the
Acrobat Spelling plug-in and the spelling dictionaries.

Spell Properties

available

5.0 (X)

trueif the spell object is available.

Type: Boolean Access:R.
Example
console.println("Spell checking available: " + gpell.available) ;
dictionaryNames

5.0 (X)

An array of available dictionary names. A subset of this array can be passed to check,
checkText, and checkWord, and to spellDictionaryOrder to force the use of a
specific dictionary or dictionaries and the order they should be searched.

Alisting of valid dictionary names for the user’s installation can be obtained by executing
spell.dictionaryNames from the console.

358 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

Spell Properties
Type: Array Access:R.
dictionaryOrder
5.0 (X)
The dictionary array search order specified by the user on the Spelling Preferences panel.
The Spelling plug-in will search for words first in the doc . spellDictionaryOrder
array if it has been set for the document, and then it will search this array of dictionaries.
Type: Array Access:R.
domainNames
5.0 (X
The array of spelling domains that have been registered with the Spelling plug-in by other
plug-ins. A subset of this array can be passed to check to limit the scope of the spell check.
Depending on the user's installation, valid domains can include:
Everything
Form Field
All Form Fields
Comment
All Comments
Type: Array Access:R.
languages
6.0 (X

This property returns the array of available ISO 639-2, 3166 language codes. A subset of
this array can be passed to the check, checkText, checkWord, and
customDictionaryCreate methods, and to the doc. spellLanguageOrder

property to force the use of a specific language or languages and the order they should be
searched.

Type: Array Access:R.

Depending on the user’s installation, valid language codes can include:

Code Description Code Description

ca Catalan it Italian

Acrobat JavaScript Scripting Reference

359

- Acrobat JavaScript Scripting Reference
Spell Properties

Code Description Code Description
da Danish no Norwegian
nl Dutch nn Nynorsk
en English pl Polish
en-GB English - UK pt Portuguese
fi Finish pt-BR Portuguese-Brazilian
fr French es Spanish
fr-ca French-Canadian ru Russian
de German sv Swedish
de-CH German-Swiss

Example

List all available language codes.

console.println(spell.languages.toSource());

languageOrder

6.0 (X

This property returns the dictionary search order as an array of ISO 639-2, 3166 language
codes. This is the order specified by the user on the Spelling Preferences panel. The Spelling
plug-in will search for words first in the doc . spellLanguageOrder array if it has been
set for the document, and then it will search this array of languages.

Type: Array Access:R.

Example
Get a listing of the dictionary search order.

console.println(spell.languageOrder.toSource ()) ;

360 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Spell Methods

Spell Methods

addDictionary

® | ® (X)

Adds a dictionary to the list of available dictionaries .

A dictionary actually consists of four files: DDDxxxxx . hyp, DDDxxxxx . leX,

DDDxxxXxX . ¢1x, and DDDxxxxX . env. The cFile parameter must be the device-
independent path of the . hyp file. For example,"/c/temp/testdict /TST.hyp"
Spelling will look in the parent directory of the TST.hyp file for the other three files. All four
file names must start with the same unique 3 characters to associate them with each other,
and they must end with the dot three extensions listed above, even on a Macintosh.

NoTe: Beginning with Acrobat 6.0, this method is no longer supported. The return value of
this method is always £alse. Use the customDictionaryOpen method.

Parameters

cFile

cName

bShow

The device-independent path to the dictionary files.

The dictionary name used in the spelling dialog and can be used as the
input parameter to the check, checkText, and checkWord.

(optional) When true (the default), Spelling combines the cName value
with "User: " and shows that name in all lists and menus. For example if
cName is "Test", Spelling adds "User: Test" to all lists and menus.

When false, Spelling does not show this custom dictionary in any lists or
menus.

Returns

false

addWord

50 | P (X)

Adds a new word to a dictionary. See also the removeWord.

Note: Internally, the Spell Check Object scans the user "Not-A-Word" dictionary and
removes the word if it is listed there. Otherwise, the word is added to the user
dictionary. The actual dictionary is not modified.

Acrobat JavaScript Scripting Reference

361

- Acrobat JavaScript Scripting Reference
Spell Methods

Parameters
cWord The new word to add.
cName (optional) The dictionary name or language code. An array of the currently
installed dictionaries can be obtained using dictionaryNames or
languages.
Returns

trueif successful, otherwise, false.

check
5.0 (X

Presents the Spelling dialog to allow the user to correct misspelled words in form fields,
annotations, or other objects.

Parameters

aDomain (optional) An array of document objects that should be checked by
the Spelling plug-in, for example form fields or comments. When you
do not supply an array of domains the "EveryThing" domain will be
used. An array of the domains that have been registered can be
obtained using the domainNames.

aDictionary (optional) The array of dictionary names or language codes that the
spell checker should use. The order of the dictionaries in the array is
the order the spell checker will use to check for misspelled words. An
array of the currently installed dictionaries can be obtained using
spell.dictionaryNames or spell. languages. When this
parameter is omitted the spellDictionaryOrder list will be
searched followed by the dictionaryOrder list.

Returns

trueif the user changed or ignored all of the flagged words. When the user dismisses the
dialog before checking everything the method returns false.

Example

var dictionaries = ["de", "French", "en-GB"];
var domains = ["All Form Fields", "All Annotations"];
if (spell.check(domains, dictionaries))
console.println("You get an A for spelling.");
else
console.println("Please spell check this form before you submit.");

362 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Spell Methods

checkText
5.0 (X)

Presents the spelling dialog to allow the user to correct misspelled words in the specified
string.

Parameters

cText The string to check.

aDictionary (optional) The array of dictionary names or language codes that the
spell checker should use. The order of the dictionaries in the array is
the order the spell checker will use to check for misspelled words. An
array of the currently installed dictionaries can be obtained using
spell.dictionaryNames or spell. languages. When this
parameter is omitted the spellDictionaryOrder list will be
searched followed by the dictionaryOrder list.

Returns

The result from the spelling dialog in a new string.

Example

var £ = this.getField("Text Box") // a form text box
f.value = spell.checkText (f.value); // let the user pick the dictionary

checkWord
5.0 (X

Checks the spelling of a specified word.

Parameters

cWord The word to check.

aDictionary (optional) The array of dictionary names or language codes that the
spell checker should use. The order of the dictionaries in the array is
the order the spell checker will use to check for misspelled words. An
array of the currently installed dictionaries can be obtained using
spell.dictionaryNames or spell.languages. When this
parameter is omitted the spellDictionaryOrder list will be
searched followed by the dictionaryOrder list.

Acrobat JavaScript Scripting Reference 363

- Acrobat JavaScript Scripting Reference
Spell Methods

Returns

A null object if the word is correct, otherwise an array of alternative spellings for the
unknown word.

Example 1
var word = "subpinna"; /* misspelling of "subpoena" */
var dictionaries = ["English"];

var f = this.getField("Alternatives") // alternative spellings listbox
f.clearItems() ;

f.setItems (spell.checkWord (word, dictionaries));
Example 2

The following script goes through the document and marks with a squiggle annot any
misspelled word. The contents of the squiggle annot contains the suggested alternative
spellings. The script can be executed from the console, as a mouse up action within the
document, a menu, or as a batch sequence.

var ckWord, numWords;
for (var i = 0; i < this.numPages; i++)
{
numWords = this.getPageNumWords (i) ;
for (var j = 0; j < numWords; J++)
{
ckWord = spell.checkWord (this.getPageNthWord (i, j))
if (ckWord != null)
{
this.addAnnot ({
page: i,
type: "Squiggly",
quads: this.getPageNthWordQuads (i, 7j),
author: "A. C. Acrobat",
contents: ckWord.toString ()

customDictionaryClose

6.0 X)

Closes a custom dictionary that was opened using customDictionaryOpen or
customDictionaryCreate.

364

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Spell Methods

Parameters

cName Dictionary name used when this dictionary was opened or created.

Returns

true if successful, false on failure.

customDictionaryCreate

6.0 ©| O

Use this method to create a new custom dictionary file and add it to the list of available
dictionaries.

NoTe: (Security ®): This method is allowed only during console, menu or batch events.

Parameters

cName Dictionary name used in the spelling dialog and can be used as the
input parameter to check, checkText, and checkWord methods.

cLanguage (optional) Use this parameter to associate this dictionary with a
language. A list of available languages can be obtained from the
spell.languages property.

bShow (optional) If true, the default, spelling will combine the cName
parameter with "User: " and show that name in all lists and menus.
For Example, if cName is "Test", spelling will add "User: Test" to

all lists and menus. When bShow is £alse, Spelling will not show
this custom dictionary in any lists or menus.

Returns

true if successful, false on failure. This method will fail if the user does not have read
and write permission to this directory.

Example

Open this document, the Acrobat JavaScript Scripting Reference, in Acrobat and execute the
following script in the console. This script goes through the bookmarks and extracts the
first word of each bookmark. If that word is already in a dictionary, it is discarded. An
unknown word—assumed to be the name of an Acrobat JavaScript object, property or
method—is added into a newly created dictionary called "JavaScript".

spell.customDictionaryCreate ("JavaScript", "en", true);
function GetJSTerms (bm, nLevel)

{

var newWord = bm.name.match (re) ;
var ckWord = spell.checkWord(newWord[0]) ;

Acrobat JavaScript Scripting Reference 365

- Acrobat JavaScript Scripting Reference
Spell Methods

if (ckWord !'= null)

{

var cWord = spell.addWord(newWord[0], "JavaScript");
if (cWord) console.println(newWord[0]);

}

if (bm.children != null)
for (var i = 0; 1 < bm.children.length; i++)
GetJSTerms (bm.children([i], nLevel + 1) ;

}

console.println ("\nAdding New words to the \"JavaScript\" "
+ "dictionary:") ;

var re = /"\w+/;

GetJSTerms (this.bookmarkRoot, 0) ;

customDictionaryDelete

6.0 ®| O

Use this method to close and delete a custom dictionary file that was opened via
ccustomDictionaryOpen or customDictionaryCreate.

NoTe: (Security ®): This method is allowed only during console, menu or batch events.

Parameters

cName The name of the dictionary to be deleted. This is the name used when
this dictionary was opened or created.

Returns

trueif successful, false on failure. This method will fail if the user does not have
sufficient file system permission.

Example
Delete a custom dictionary.

spell.customDictionaryDelete ("JavaScript") ;

customDictionaryExport

6.0 ORKX)

This method will export a custom dictionary to a new file that was opened using the spell
methods customDictionaryOpen or customDictionaryCreate.

The user will be prompted for an export directory. The custom dictionary will be saved
there as a . clamfile using the dictionary name and the language specified on
customDictionaryCreate. For example if the dictionary name is "JavaScript" and the

366 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Spell Methods

"en" language as specified when it was created then the export file name will be
JavaScript-eng.clam

Exported custom dictionaries can be used in subsequent customDictionaryOpen
calls.

NoTe: (Security ®): This method is allowed only during console, menu or batch events.

Parameters

cName The dictionary name used when this dictionary was opened or
created.

Returns

true if successful, false on failure. This method will fail if the user does not have
sufficient file system permission.

Example

Export a custom dictionary for distribution to other users. The exported dictionary can then
be sent to other users. (See the example that follows customDictionaryCreate.)

spell.customDictionaryExport ("JavaScript") ;

customDictionaryOpen

6.0 X)

Use this method to add an custom export dictionary to the list of available dictionaries. See
customDictionaryExport.

Note: A custom dictionary file can be created using the customDictionaryCreate
and customDictionaryExport methods.

Parameters
cDIPath The device independent path to the custom dictionary file.
cName Dictionary name used in the spelling dialog and can be used as the
input parameter to check, checkText, and checkWord methods
bShow (optional) If true, the default, Spelling will combine the cName

parameter with "User : " and show that name in all lists and menus.
For Example if cName is "Test ", Spelling will add "User: Test" to
all lists and menus. When bShowis f£alse, Spelling will not show
this custom dictionary in any lists or menus.

Acrobat JavaScript Scripting Reference 367

- Acrobat JavaScript Scripting Reference
Spell Methods

Returns

true if successful, false on failure. This method will fail if the user does not have read
permission for the file.

Example

This example continues the ones begun following customDictionaryCreateand
customDictionaryExport.

Add an custom export dictionary to the list of available dictionaries. The user places the
custom export dictionary any any folder for which there is read/write permission. One
particular choice is the user dictionaries folder. This location of this folder can be
obtained from the app.getPath method.

app.getPath ("user", "dictionariesg");

Once the export dictionary has been placed, listing it can be made automatic by adding

some folder level JavaScript. The path to the user JavaScripts can be obtained by
executing

app.getPath("user", "javascript");
Finally, create an . js file in this folder and add the line

var myDictionaries = app.getPath("user", "dictionaries");
spell.customDictionaryOpen(myDictionaries, "JavaScripts", true);

The next time Acrobat is started, the "JavaScript” dictionary will be open and available.

ignoreAll

6.0 (X)

Adds or removes a word from the Spelling ignored-words list of the current document.

Note: A document must be open in the viewer or this method will throw an exception.

Parameters
cWord The word to be added or removed from the ignored list.
bIgnore (optional) If true (the default), the word is added to the document
ignored word list; if £alse, the word is removed from the ignored list.
Returns

trueif successful. An exception is thrown if there is no document open in the viewer when
this method is executed.
Example

var bIgnored = spell.ignoreAll ("foo");
if (bIgnored) console.println("\"foo\" will be ignored) ;

368

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
Spell Methods

removeDictionary

® | ® (X)

Removes a user dictionary that was added via addDictionary.

NoTe: Beginning with Acrobat 6.0, this method is no longer supported. The return value of
this method is always £alse. Use the customDictionaryClose method.

Parameters
cName The name of the dictionary to remove. Must be the same name as was
used with addDictionary.
Returns
false
removeWord

50 | P (X

Removes a word from a dictionary. Words cannot be removed from user dictionaries that
were created using either customDictionaryCreate or
customDictionaryExport.

See also addWord.
Note: Internally the Spell Check object scans the user dictionary and removes the

previously added word if it is there. Otherwise the word is added to the user’s "Not-
A-Word" dictionary. The actual dictionary is not modified.

Parameters
cWord The word to remove.
cName (optional) The dictionary name or language code. An array of
currently installed dictionaries can be obtained using
dictionaryNames or languages.
Returns

trueif successful, false otherwise

Acrobat JavaScript Scripting Reference 369

- Acrobat JavaScript Scripting Reference
Statement Object
userWords

5.0 (X)

Gets the array of words a user has added to or removed from a dictionary. See also
addWord and checkWord.

Parameters

cName (optional) The dictionary name or language code. An array of currently
installed dictionaries can be obtained using dictionaryNames or
languages. If cName is not specified, the current default dictionary will
be used. The current default dictionary is the first dictionary specified in
the Spelling preferences dialog.

bAdded (optional) When true, return the user’s array of added words. When
false, return the user’s array of removed words. The default is true.

Returns

The user’s array of added or removed words.

Example

List the words added to the "JavaScript" dictionary. (See the example that follows the
description of customDictionaryCreate.)

var aUserWords = spell.userWords ({cName: "JavaScript"});
aUserWords.toSource () ;

Statement Object

5.0 (X)

Use statement objects to execute SQL updates and queries, and retrieve the results of
these operations. To create a statement object, use connection.newStatement.

See also:
e The Connection Object.
e The ADBC Object.

e Column Generic Object, Columninfo Generic Object, Row Generic Object, Tablelnfo
Generic Object

370 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

Statement Properties

Statement Properties

columnCount

The number of columns in each row of results returned by a query. It is undefined in the
case of an update operation.

Type: Number Access:R.

rowCount

The number of rows affected by an update. It is not the number of rows returned by a query.
Its value is undefined in the context of a query.

Type: Number Access:R.

Statement Methods

execute

Executes an SQL statement through the context of the Statement object. On failure,
execute throws an exception.

Note: There is no guarantee that a client can do anything on a statement if an execute has
neither failed nor returned all of its data.

Parameters

cSQL The SQL statment to execute.

Returns

Nothing

Example

statement .execute ("Select * from ClientData") ;

If the name of the database table or column name contains spaces, they need to be
enclosed in escaped quotes. For example:

var execStrl "Select firstname, lastname, ssn from \"Employee Info\"";
var execStr2 "Select \"First Name\" from \"Client Data\"";

statement .execute (execStrl) ;

statement .execute (execStr2) ;

Acrobat JavaScript Scripting Reference 371

- Acrobat JavaScript Scripting Reference
Statement Methods

A cleaner solution would be to enclose the whole SQL string with single

quotes, then table names and column names can be enclosed with double
quotes.

var execStr3 = 'Select "First Name", "Second Name" from "Client Data" ';
statement .execute (execStr3) ;

See getRow and nextRow for extensive examples.

getColumn

Obtains a column object representing the data in the specified column.

NoTe: Once a column is retrieved with one of these methods, future calls attempting to
retrieve the same column may fail.

Parameters
nColumn The column from which to get the data. May be a column number
or a string, the name of the desired column (see the Columninfo
Generic Object).

nDesiredType (optional) Which of the ADBC JavaScript Types best represents the
data in the column.

Returns

A Column Generic Object representing the data in the specified column, ornull on
failure.

getColumnArray
Obtains an array of column objects, one for each column in the result set. A “best guess” is
used to decide which of the ADBC JavaScript Types best represents the data in the column.

NoTe: Once a column is retrieved with one of these methods, future calls attempting to
retrieve the same column may fail.

Parameters

None
Returns

An array of column objects, or null on failure as well as a zero-length array.

getRow

Obtains a Row Generic Object representing the current row. This object contains

information from each column. As for getColumnArray, column data is captured in the
“best guess” format.

372

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
Statement Methods

A call to nextRow should precede a call to getRow. Calling getRow twice, without an
intervening call to nextRow yields a null return value for the second call to getRow.

Parameters

None

Returns

A Row Generic Object.
Example 1

Every Row object contains a property for each column in a row of data. Consider the
following example:

var execStr = "SELECT firstname, lastname, ssn FROM \"Employee Info\"";
statement .execute (execStr) ;
statement .nextRow () ;
row = statement.getRow() ;
console.println("The first name of the first person retrieved is: "
+ row.firstname.value) ;
console.println("The last name of the first person retrieved is: "
+ row.lastname.value) ;
console.println("The ssn of the first person retrieved is: "
+ row.ssn.value) ;

Example 2

If the column name contains spaces, then the above syntax for accessing the row
properties (for example, row. £irstname.value) does not work. Alternatively,

Connect = ADBC.newConnection ("Test Database") ;

statement = Connect.newStatement () ;

var execStr = 'Select "First Name", "Second Name" from "Client Data" ';
statement .execute (execStr) ;

statement .nextRow () ;

// Populate this PDF file
this.getField("name.first") .value = row["First Name"] .value;
this.getField("name.last") .value = row["Second Name"] .value;

nextRow

Obtains data about the next row of data generated by a previously executed query. This
must be called following a call to execute to acquire the first row of results.

Parameters

None

Returns

Nothing. Throws an exception on failure (if, for example, there is no next row).

Acrobat JavaScript Scripting Reference 373

- Acrobat JavaScript Scripting Reference
Statement Methods

Example

The following example is a rough outline of how to create a series of buttons and
Document Level JavaScripts to browse a database and populate a PDF form.

For the getNextRow button, defined below, the nextRow () is used to retrieve the next
row from the database, unless there is an exception thrown (indicating that there is no next
row), in which case, we reconnect to the database, and use nextRow () to retrieve the first
row of data (again).

/* Button Script */
// getConnected button
if (getConnected())
populateForm (statement .getRow ()) ;

// a getNextRow button
try {
statement .nextRow () ;
}catch(e) {
getConnected() ;
}

var row = statement.getRow () ;
populateForm (row) ;

/* Document Level JavaScript */
// getConnected() Doc Level JS
function getConnected ()
{
try |
ConnectADBCdemo = ADBC.newConnection ("ADBCdemo") ;
if (ConnectADBCdemo == null)
throw "Could not connect";
statement = ConnectADBCdemo.newStatement () ;
if (statement == null)
throw "Could not execute newStatement";
if (statement.execute("Select * from ClientData"))
throw "Could not execute the requested SQL";
if (statement.nextRow())
throw "Could not obtain next row";
return true;
} catch(e) {
app.alert (e) ;
return false;

}
}

// populateForm /()
/* Maps the row data from the database, to a corresponding text field
in the PDF file. */
function populateForm (row)
{
this.getField("firstname") .value = row.FirstName.value;
this.getField("lastname") .value = row.LastName.value;

374 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Tablelnfo Generic Object

this.getField("address") .value = row.Address.value;
this.getField("city") .value = row.City.value;
this.getField("state") .value = row.State.value;
this.getField("zip") .value = row.Zipcode.value;
this.getField("telephone") .value = row.Telephone.value;
this.getField("income") .value = row.Income.value;

Tablelnfo Generic Object

This generic JS object contains basic information about a table, and is returned by
connection.getTableList. It contains the following properties.

Property Type Access Description

name String R The identifying name of a table. This string could
be used in SQL statements to identify the table
that the tableInfo object is associated with.

description String R A string that contains database-dependent
information about the table.

Template Object

Template objects are named pages within the document. These pages may be hidden or
visible and can be copied or spawned. They are typically used to dynamically create content
(for example, to add pages to an invoice on overflow).

See also the Doc Object templates property, and methods createTemplate,
getTemplate, and removeTemplate.

Template Properties

hidden
50 | © Q

Whether the template is hidden or not. Hidden templates cannot be seen by the user until
they are spawned or are made visible. When an invisible template is made visible it is
appended to the document.

Acrobat JavaScript Scripting Reference 375

- Acrobat JavaScript Scripting Reference
Template Methods

Note: Setting this property in Adobe Reader (before 5.1) generates an exception. For
Adobe 5.1 Reader and beyond, setting this property depends on Advanced Forms
Feature document rights.

Type: Boolean Access: R/W.

name

5.0

The name of the template which was supplied when the template was created.

Type: String Access: R.

Template Methods

spawn
50 | © Q

Creates a new page in the document based on the template.

Parameters

nPage (optional) The 0-based index of the page number after which or on
which the new page will be created, depending on the value of
bOverlay. The default is 0.

bRename (optional) Whether form fields on the page should be renamed. The
default is true.

bOverlay (optional) When true (the default), the template is overlaid on the
specified page. When £alse, itisinserted as a new page before the
specified page.
To append a page to the document, set bOverlayto f£alse and set
nPage to the number of pages in the document.

NoTe: For certified documents, or documents with “Advanced Form
Features rights” (6), the bOverlay parameter is disabled;
this means that a template cannot be overlaid for these types of
documents.

oXObject (optional, version 6.0) The value of this parameter is the return value
of an earlier call to spawn.

376 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
Thermometer Object

Returns

Prior to Acrobat 6.0, this method returned nothing. Now, spawn returns an object
representing the page contents of the page spawned. This return object can then be used
as the value of the optional parameter oXObject for subsequent calls to spawn..

Note: Repeatedly spawning the same page can cause a large inflation in the file size. To
avoid this file size inflation problem, spawn now returns an object that represents
the page contents of the spawned page. This return value can be used as the value
of the oXObject parameter in subsequent calls to the spawn method to spawn
the same page.

Example 1

This example spawns all templates and appends them one by one to the end of the
document.

var a = this.templates;
for (i = 0; 1 < a.length; i++)
ali] .spawn (this.numPages, false, false);

Example 2 (version 6.0)

The following example spawns the same template 31 times using the oXObject
parameter and return value. Using this technique avoids overly inflating the file size.

var t = this.templates;

var T = t[0];

var XO = T.spawn(this.numPages, false, false);

for (var i1=0; i<30; i++) T.spawn(this.numPages, false, false, XO);

Thermometer Object

6.0
This object is a combined status window/progress bar that indicates to the user that a
lengthy operation is in progress. To acquire a thermometer object, use
app . thermometer.
Example

The following is a general example that illustrates how to use all properties and methods of
the thermometer object.

var t = app.thermometer; // acquire a thermometer object
t.duration = this.numPages;
t.begin() ;

for (var 1 = 0; i < this.numPages; i++)

{

t.value = i;
t.text = "Processing page " + (i + 1);
if (t.cancelled) break; // break if operation cancelled

Acrobat JavaScript Scripting Reference 377

- Acrobat JavaScript Scripting Reference
Thermometer Properties

. process the page ...

}

t.end() ;

Thermometer Properties

cancelled

Whether the user wants to cancel the current operation. The user can indicate to the script
the desire to terminate the operation by pressing the escape key on the Windows and Unix
platforms and command-period on the Macintosh platform.

Type: Boolean Access:R.

duration

Sets the value that corresponds to a full thermometer display. The thermometer is
subsequently filled in by setting its value. The default duration is 100.

Type: Number Access: R/W.

value

Sets the current value of the thermometer and updates the display. The allowed value
ranges from 0 (empty) to the value set in the duration. For example, if the thermometer’s
duration is 10, the current value must be between 0 and 10, inclusive. If value is less than
zero, it is set to zero. If value is greater than duration, it is set to duration.

Type: Number Access: R/W.

text

Sets the text string that is displayed by the thermometer.

Type: String Access: R/W.

Thermometer Methods
begin

Initializes the thermometer and displays it with the current value as a percentage of the
duration.

378 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
TTS Object

Parameters

None

Returns

Nothing
Example

Count words on each page of current document, report running total and use
thermometer to track progress.

var t = app.thermometer; // acquire a thermometer object
t.duration = this.numPages;

t.begin() ;

var cnt=0;

for (var 1 = 0; i < this.numPages; i++)

{

t.value = i;

t.text = "Processing page " + (i + 1);

cnt += getPageNumWords (1) ;

console.println("There are " + cnt + "words in this doc.");
if (t.cancelled) break;

}

t.end();

end
Draws the thermometer with its current value set to the thermometer’s duration (a full
thermometer), then removes the thermometer from the display.
Parameters

None

Returns

Nothing

TTS Object

4.05

The JavaScript TTS object allows users to transform text into speech. To be able to use the
TTS object, the user’s machine must have a Text-To-Speech engine installed on it. The Text-
To-Speech engine will render text as digital audio and then “speak it” It has been
implemented mostly with accessibility in mind but it could potentially have many other
applications, bringing to life PDF documents.

Acrobat JavaScript Scripting Reference 379

- Acrobat JavaScript Scripting Reference
TTS Properties

This is currently a Windows-only feature and requires that the MicroSoft Text to Speech
engine be installed in the operating system.

The TTS object is present on both the Windows and Mac platforms (since it is a JavaScript
object); however, it is disabled on the Mac.

Note: Acrobat 5.0 has taken a very different approach to providing accessibility for
disabled users by integrating directly with popular screen readers. Some of the
features and methods defined in 4.05 for the TTS object have been deprecated as a
result as they conflict with the screen reader. The TTS object remains, however, as it
still has useful functionality in its own right that might be popular for multi-media
documents.

TTS Properties

available

trueif the TTS object is available and the Text-To-Speech engine can be used.

Type: Boolean Access:R.
Example
console.println("Text to speech available: " + tts.available);
numSpeakers

The number of different speakers available to the current text to speech engine. See also
the speaker and the getNthSpeakerName.

Type: Integer Access:R.
pitch
Sets the baseline pitch for the voice of a speaker. The valid range for pitch is from 0 to 10,
with 5 being the default for the mode.
Type: Integer Access: R/W.
soundCues

®

Deprecated. Now returns only false.

Type: Boolean Access: R/W.

380 Acrobat JavaScript Scripting Reference

http://microsoft.com/msdownload/sapi/engine10.asp?submit9=Microsoft+Text-to-Speech+Engine+%28MSTTSA22L.EXE%29

Acrobat JavaScript Scripting Reference -
TTS Methods

speaker

Allows users to specify different speakers with different tone qualities when performing
text-to-speech. See also the numSpeakers and the getNthSpeakerName.

Type: String Access: R/W.

speechCues

®

Deprecated. Now returns only false.

Type: Boolean Access: R/W.

speechRate

Sets the speed at which text will be spoken by the Text-To-Speech engine. The value for
speechRate is expressed in number of words per minute.

Type: Integer Access: R/W.

volume

Sets the volume for the speech. Valid values are from 0 (mute) to 10 (loudest).

Type: Integer Access: R/W.

TTS Methods

getNthSpeakerName

Gets the nth speaker name in the currently installed text to speech engine (see also
numSpeakers and speaker).

Parameters

nIndex The index of the desired speaker name.

Returns

The name of the specified speaker.

Acrobat JavaScript Scripting Reference 381

- Acrobat JavaScript Scripting Reference
TTS Methods

Example

Enumerate through all of the speakers available.

for (var 1 = 0; i < tts.numSpeakers; i++)
var cSpeaker = tts.getNthSpeakerName (1) ;
console.println("Speaker[" + 1 + "]
tts.speaker = cSpeaker;
tts.gText ("Hello");
tts.talk() ;

= " + cSpeaker) ;

pause

Immediately pauses text-to-speech output on a TTS object. Playback of the remaining
queued text can be resumed via resume.

Parameters
None

Returns

Nothing

qSilence

Queues a period of silence into the text.

Parameters

nDuration The amount of silence in milliseconds.

Returns

Nothing
qSound

Puts the specified sound into the queue in order to be performed by talk. It accepts one
parameter, cSound, from a list of possible sound cue names. These names map directly to
sound files stored in the SoundCues folder, if it exists.

tts.gSound ("DocPrint") ; // Plays DocPrint.wav

The SoundCues folder should exist at the program level for the viewer, for example,
C:\Program Files\Adobe\Acrobat 5.0\SoundCues.

Note: Windows only—gSound can handle only 22KHz,16 bit PCM .wav files. These should
be at least one second long in order to avoid a queue delay problem in MS SAPL. In

case the sound lasts less than one second, it should be edited and have a silence
added to the end of it.

382

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
TTS Methods

Parameters

cSound The sound cue name to use.

Returns

Nothing

qText

Puts text into the queue in order to be performed by talk.

Parameters

cText The text to convert to speech.

Returns

Nothing

Example
tts.gText ("Hello, how are you?") ;

reset
Stops playback of current queued text and flushes the queue. Playback of text cannot be
resumed via resume. Additionally, it resets all the properties of the TTS object to their
default values.
Parameters
None
Returns
Nothing
resume
Resumes playback of text on a paused TTS object.
Parameters
None
Returns
Nothing

Acrobat JavaScript Scripting Reference 383

- Acrobat JavaScript Scripting Reference
this Object

stop
Stops playback of current queued text and flushes the queue. Playback of text cannot be
resumed with resume.
Parameters
None
Returns
Nothing
talk
Sends whatever is in the queue to be spoken by the Text-To-Speech engine. If text output
had been paused, talk resumes playback of the queued text.
Parameters
None
Returns
Nothing
Example
tts.gText ("Hello there!") ;
tts.talk() ;

this Object

In JavaScript the special keyword this refers to the current object. In Acrobat the current
object is defined as follows:

e Inanobject method, itis the object to which the method belongs.
e Ina constructor function, it is the object being constructed.

e Inafunction defined in one of the Folder Level JavaScripts files, it is undefined. It is
recommended that calling functions pass the document object to any function at this
level that needs it.

e InaDocument level script or Field level script it is the document object and therefore
can be used to set or get document properties and functions.

For example, assume that the following function was defined at the Plug-in folder level:

function PrintPageNum (doc)

{ /* Print the current page number to the console. */
console.println("Page = " + doc.page) ;

}

384 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Util Object

The following script outputs the current page number to the console (twice) and then
prints the page:

/* Must pass the document object. */
PrintPageNum (this) ;

/* Same as the previous call. */
console.println("Page = " + this.pageNum) ;

/* Prints the current page. */

this.print (false, this.pageNum, this.pageNum) ;

Variable and Function Name Conflicts
Variables and functions that are defined in scripts are parented off of the this object. For
example:
var £ = this.getField("Hello") ;
is equivalent to
this.f = this.getField("Hello") ;

with the exception that the variable f can be garbage collected at any time after the script is
run.

Acrobat JavaScript programmers should avoid using property and method names from the
Doc Object as variable names. Use of method names when after the reserved word "var"
will throw an exception, as the following line illustrates:

var getField = 1; // TypeError: redeclaration of function getField

Use of property names will not throw an exception, but the value of the property may not
be altered if the property refers to an object:

// "title" will return "1", but the document will now be named "1".
var title = 1;
// property not altered, info still an object
var info = 1; // "info" will return [object Infol
The following is an example of avoiding variable name clash.
var f = this.getField("mySignature"); // uses the ppklite sig handler

// use "Info" rather than "info" to avoid a clash
var Info = f.signatureInfo();

// some standard signatureInfo properties
console.println("name = " + Info.name) ;

Util Object

A static JavaScript object that defines a number of utility methods and convenience
functions for string and date formatting and parsing.

Acrobat JavaScript Scripting Reference 385

386

Acrobat JavaScript Scripting Reference

Util Methods

Util Methods

printf

Formats one or more values as a string according to a format string. This is similar to the C
function of the same name. This method converts and formats incoming arguments into a
result string according to a format string (cFormat).

The format string consists of two types of objects:
e Ordinary characters, which are copied to the result string

e Conversion specifications, each of which causes conversion and formatting of the next
successive argument to print£ ().

Each conversion specification is constructed as follows:
% [,nDecSep] [cFlags] [nWidth] [.nPrecision] cConvChar

The following table describes the components of a conversion specification.

nDecSep Preceded by a comma character (,), is a digit from 0 to 3 which
indicates the decimal/separator format:
e 0-comma separated, period decimal point.
e 1-no separator, period decimal point.
e 2 - period separated, comma decimal point.
e 3 -no separator, comma decimal point.

cFlags Only valid for numeric conversions and consists of a number of
characters (in any order), which will modify the specification:
e + - specifies that the number will always be formatted with a sign.
e space - if the first character is not a sign, a space will be prefixed.
e 0 - specifies padding to the field with leading zeros.
e # - which specifies an alternate output form. For f the output will
always have a decimal point.

nWidth A number specifying a minimum field width. The converted argument
will be formatted in so that it is at least this many characters wide,
including the sign and decimal point, and may be wider if necessary. If
the converted argument has fewer characters than the field width it
will be padded on the left to make up the field width. The padding
character is normally a space, but is 0 if zero padding flag is present.

nPrecision A number, preceded by a period character (.), which specifies the
number of digits after the decimal point for float conversions.

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

Util Methods

cConvChar

One of:

e d-integer, interpret the argument as an integer (truncating if

necessary).
e f-float, interpret the argument as

a number.

e s-string, interpret the argument as a string.
e x - hexadecimal, interpret the argument as an integer (truncating if

necessary)and format in unsigned

hexadecimal notation.

Parameters

cFormat

The format string to use.

Returns

A result string (cResult) formatted as specified.

Example

var n

console.

console
console
console
console

console.

Output

Decimal

Hex format:

Math.PI * 100;

13A

Float format: 314.16
String format: 314.159265358979

printd

clear () ;

.show () ;

.println(util.printf ("Decimal format: %d4d", n));
.println(util.printf ("Hex format: %x", n));
.println(util.printf ("Float format: %.2f", n));
println(util.printf ("String format: %s", n));
format: 314

Formats a date. Valid string format values for the cFormat parameter are as follows:

String Effect Example Version
mmmm Long month September

mmm Abbreviated month Sept

mm Numeric month with leading zero 09

m Numeric month without leading zero 9

dddd Long day Wednesday

ddd Abbreviated day Wed

Acrobat JavaScript Scripting Reference

387

388

Acrobat JavaScript Scripting Reference

Util Methods

String Effect Example Version
dd Numeric date with leading zero 03

d Numeric date without leading zero 3

yyyy Long year 1997

yy Abbreviate Year 97

HH 24 hour time with leading zero 09

H 24 hour time without leading zero 9

hh 12 hour time with leading zero 09

h 12 hour time without leading zero 9

MM minutes with leading zero 08

M minutes without leading zero 8

SS seconds with leading zero 05

3 seconds without leading zero 5

tt am/pm indication am

t single digit am/pm indication a

j Japanese Emperor Year (abbreviated) 6.0
jj Japanese Emperor Year 6.0
\ use as an escape character
A variety of addition “quick” formats are possible using numeric values.

Value Description Example Verson
0 PDF date format D:20000801145605+07'00' 5.0
1 Universal 2000.08.01 14:56:05 +07'00' 5.0
2 Localized string 2000/08/01 14:56:05 5.0

Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference

Util Methods
Parameters
cFormat The format to use; a string or a number.
oDate The date to format.
Returns

The formatted date string.

Example

To format the current date in long format, for example, you would use the following script:
var d = new Date();
console.println(util.printd ("mmmm dd, yyyy", 4d));
Example (Version 5.0)
// display date in a local format
var d = new Date();
console.println(util.printd (2, 4d));
Example (Version 6.0)

var d = new Date() ;
console.println(util.printd("jj", d));

printx

Formats a source string, cSource, according to a formatting string, cFormat. A valid
format for cFormat is any string which may contain special masking characters:

Value Effect

? Copy next character.

X Copy next alphanumeric character, skipping any others.
A Copy next alpha character, skipping any others.

9 Copy next numeric character, skipping any others.

*

Copy the rest of the source string from this point on.

\ Escape character.
> Uppercase translation until further notice.
< Lowercase translation until further notice.

= Preserve case until further notice (default).

Acrobat JavaScript Scripting Reference 389

- Acrobat JavaScript Scripting Reference
Util Methods

Parameters
cFormat The formatting string to use.
cSource The source string to use.
Returns

The formatted string.

Example
To format a string as a U.S. telephone number, for example, use the following script:

var v = "aaal4159697489zzz";
v = util.printx("9 (999) 999-9999", Vv);
console.println(v) ;

scand
4.0

Converts the supplied date, cDate, into a JavaScript date object according to rules of the

supplied format string, cFormat. This routine is much more flexible than using the date

constructor directly.

Note: Given a two digit year for input, scand resolves the ambiguity as follows: if the year
is less than 50 then it is assumed to be in the 21st century (that is, add 2000), if it is
greater than or equal to 50 then it is in the 20th century (add 1900). This heuristic is
often known as the Date Horizon.

Parameters
cFormat The rules to use for formatting the date. cFormat uses the same
syntax as found in printd
cDate The date to convert.
Returns
The converted date object.
Example

/* Turn the current date into a string. */

var cDate = util.printd("mm/dd/yyyy", new Date());
console.println("Today'’s date: " + cDate);

/* Parse it back into a date. */

var d = util.scand("mm/dd/yyyy", cDate);

/* Output it in reverse order. */

console.println("Yet again: " + util.printd("yyyy mmm dd", 4));

390 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference
Util Methods

spansToXML

6.0

This method converts an array of Span Objects into an XML(XFA) String as described in the
PDF 1.5 Specification.

Parameters

An array of Span Objects An array of span objects to be converted into an XML string.

Returns

String

xmlToSpans

6.0

This method converts an XML(XFA) String as described in the PDF 1.5 Specification to an
array of span objects suitable for specifying as the richValue or richContents of a field or

annotation.
Parameters
a string An XML (XFA) string to be converted to an array of Span
Object.
Returns

The converted date object.

Example
This example gets the value of a rich text field, turns all of the text blue, converts it to an
XML string and then prints it to the console

var £ = getField("Textl") ;
var spans = f.richvalue;
for (var index =

{
}

console.println (util.spansToXML (spans)) ;

0; index < spans.length; index++)

spans [index] .textColor = color.blue;

Acrobat JavaScript Scripting Reference

391

- Acrobat JavaScript Scripting Reference
XFA Object

XFA Object

6.0.2

The XFA object corresponds to the appModel in the XFA Scripting reference. All the XFA
documents are located at

http://partners.adobe.com/asn/tech/pdf/xmlformspec.jsp.

392 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference -
XFA Object

Acrobat JavaScript Scripting Reference 393

- Acrobat JavaScript Scripting Reference
XFA Object

394 Acrobat JavaScript Scripting Reference

New Features and Changes

This section summarizes the new features and changes introduced in Acrobat 6.0 and in
Acrobat 5.0.

Acrobat 6.0 Changes

Safe Path

An important new security posture Acrobat has taken concerns all JavaScript methods that
write data to the local hard drive based on a path passed to it by one of its parameters. All
paths are required to a safe path: For windows, the path cannot point to a system critical
folder, for example, a root, windows or system directory. However, this is not the only
requirement for a path to be safe; a path is also subject to certain, unspecified tests as well.

For many of the methods in question, the file name must have an extension appropriate to
the type of data that is to be saved; some methods may have a no-overwrite restriction.
These additional restrictions are noted in the documentation.

Generally, when a path is judged to be “not safe”, a NotAllowedError (see the Error
Objects) exception is thrown and the method fails.

Introduced in Acrobat 6.0

The following properties and methods are introduced in Acrobat 6:

ADBC Object SQL Types

AlternatePresentation Object properties:
active
type

methods:
start
stop

Acrobat JavaScript Scripting Reference 395

396

New Features and Changes
Acrobat 6.0 Changes

Annot Object

App Object

Bookmark Object

Catalog Object

Certificate Object

Collab Object

properties:
borderEffectIntensity
borderEffectStyle
inReplyTo
richContents
toggleNoView

methods:
getStateInModel
transitionToState

properties:
fromPDFConverters
printColorProfiles
printerNames
runtimeHighlight
runtimeHighlightColor
thermometer
viewerType

methods:
addToolButton
getPath
mailGetAddrs
newFDF
openFDF
popUpMenuEx
removeToolButton

methods:
setAction

properties:
isIdle
jobs

methods:
getIndex
remove

properties:
keyUsage
usage

methods:
addStateModel
removeStateModel

Acrobat JavaScript Scripting Reference

New Features and Changes -
Acrobat 6.0 Changes

Connection Object methods:
close

Dbg Object properties:
bps
methods:

c

cb

q

sb

si

sn
so
sv

Directory Object properties:
info
methods:
connect

DirConnection Object properties:
canList
canDoCustomSearch
canDoCustomUISearch
canDoStandardSearch
groups
name
uiName

methods:

search
setOutputFields

Acrobat JavaScript Scripting Reference 397

- New Features and Changes
Acrobat 6.0 Changes

Doc Object properties:
alternatePresentations
documentFileName
metadata
permStatusReady

methods:
addLink
addRecipientListCryptFilter
addScript
encryptForRecipients
exportAsText
exportXFAData
getLegalWarnings
getLinks
getOCGs
getPrintParams
importXFAData
newPage
removeLinks
setAction
setPageAction
setPageTabOrder

Error Objects properties:
fileName
lineNumber
message
name

methods:
toString

Event Object properties:
fieldFull
richChange
richChangeEx
richValue

398 Acrobat JavaScript Scripting Reference

New Features and Changes
Acrobat 6.0 Changes

FDF Object properties:
deleteOption
isSigned
numEmbeddedFiles

methods:
addContact
addEmbeddedFile
addRequest
close
mail
save
signatureClear
signatureSign
signaturevValidate

Field Object properties:
buttonFitBounds
comb
commitOnSelChange
defaultStyle
radiosInUnison
richText
richvValue
rotation

methods:

getLock
setLock
signatureGetSeedValue
signatureSetSeedvValue

Index Object methods:
build

Link Object properties:
borderColor
borderWidth
highlightMode
rect

methods:
setAction

Acrobat JavaScript Scripting Reference 399

- New Features and Changes
Acrobat 6.0 Changes

OCG Object

printParams Object

Report Object

properties:

name
state

methods:

setAction

properties:

binaryOK
bitmapDPI
colorOverride
colorProfile
constants

downloadFarEastFonts

fileName
firstPage
flags
fontPolicy
gradientDPI
interactive
lastPage
pageHandling
pageSubset
printAsImage
printContent
printerName
psLevel
rasterFlags
reversePages
tileLabel
tileMark
tileOverlap
tileScale
transparencyLevel
usePrinterCRD
useTlConversion

properties:

style

400

Acrobat JavaScript Scripting Reference

New Features and Changes
Acrobat 6.0 Changes

Search Object

Security Object

SecurityHandler Object

SOAP Object

properties:
docInfo
docText
docXMP
bookmarks
ignoreAsianCharacterWidth
jpegExif
legacySearch
markup
matchWwholeWord
wordMatching

methods:
chooseRecipientsDialog
exportToFile
importFromFile

properties:
digitalIDs
directories
directoryHandlers
signAuthor
signFDF

methods:
newDirectory

properties:
wireDump

methods:
connect
request
response
streamDecode
streamEncode
streamFromString
stringFromStream

Acrobat JavaScript Scripting Reference

401

- New Features and Changes
Acrobat 6.0 Changes

Span Object

Spell Object

Thermometer Object

Util Object

properties:
alignment
fontFamily
fontStretch
fontStyle
fontWeight
text
textColor
textSize
strikethrough
subscript
superscript
underline

properties:
languages
languageOrder

methods:
customDictionaryClose
customDictionaryCreate
customDictionaryExport
customDictionaryOpen
ignoreall

properties:
cancelled
duration
value
text

methods:
begin
end

methods:
printd
spansToXML
xmlToSpans

402

Acrobat JavaScript Scripting Reference

New Features and Changes
Acrobat 6.0 Changes

Modified in Acrobat 6.0

Changed or Enhanced Objects, Methods, and Properties

The following properties and methods have been changed or enhanced:

App Object methods:
addMenultem
alert
listMenulItems
listToolbarButtons
response

Doc Object properties:
layout
zoomType

methods:

createDataObject
exportAsFDF
exportAsXFDF
exportDataObject
flattenPages
getField (see Extended Methods)
getURL
importDataObject
importIcon
print
saveAs
spawnPageFromTemplate
submitForm

Event Object properties:
changeEx

Field Object properties:
name
methods:
buttonImportIcon
signatureInfo
signatureSign
signaturevalidate

Acrobat JavaScript Scripting Reference

403

- New Features and Changes
Acrobat 6.0 Changes

Global Object Persistent global data only applies to variables of type
Boolean, Number or String. Acrobat 6.0 has reduced
the maximum size of global persistent variables from
32 kto 2-4 k. Any data added to the string after this
limit is dropped.

Search Object methods:
query
SecurityHandler Object The following were introduced in Acrobat 5.0 as

properties and methods of the PPKLite
Signature Handler Object. In Acrobat 6.0 they
are properties and methods of the SecurityHandler
Object All of these have new descriptions, and some
have additional parameters.

Note: When signing using JavaScript methods, the
user’s digital signature profile must be a.pfx
file,notan . apf, asin prior versions of Acrobat.
To convert an . apf profile to the new .pfx
type, use the Ul (Advanced > Manage Digital
IDs > My Digital ID Files > Select My Digitial
ID File) to import the . apf profile.

properties:
appearances
isLoggedIn
loginName
loginPath
name
signInvisible
signVisible
uiName

methods:
login
logout
newUser
setPasswordTimeout

Template Objectt methods:
spawn

Extended Methods

The doc.getField method has been extended in Acrobat 6.0 so that it retrieves the
fieldobject of individual widgets. See Field Access from JavaScript for a discussion of
widgets and how to work with them.

404 Acrobat JavaScript Scripting Reference

New Features and Changes -
Acrobat 6.0 Changes

Deprecated in Acrobat 6.0

Search Object properties:
soundex
thesaurus

Spell Object methods:
addDictionary
removeDictionary

Introduced in Acrobat 6.0.2

The following properties and methods are introduced in Acrobat 6.0.2:

XFA Object

Acrobat JavaScript Scripting Reference 405

- New Features and Changes
Acrobat 5.0 Changes

Acrobat 5.0 Changes

Introduced in Acrobat 5.0

ADBC Object methods:
getDataSourceList
newConnection

Annot Object properties:
alignment
AP
arrowBegin
arrowEnd
author
contents
doc
fillColor
hidden
modDate
name
novView
page
point
points
popupRect
print
rect
readOnly
rotate
strokeColor
textFont
type
soundIcon
width

methods:
destroy
getProps
setProps

406

Acrobat JavaScript Scripting Reference

New Features and Changes
Acrobat 5.0 Changes

App Object properties:
activeDocs
fs
plugIns
viewerVariation

methods:

addMenultem
addSubMenu
clearInterval
clearTimeOut
listMenuItems
listToolbarButtons
newDoc
openbDoc
popUpMenu
setInterval
setTimeOut

Bookmark Object properties:
children
color
doc
name
open
parent
style

methods:
createChild
execute
insertChild
remove

Color Object methods:
convert
equal

Connection Object methods:
newStatement
getTableList
getColumnList

Acrobat JavaScript Scripting Reference 407

- New Features and Changes
Acrobat 5.0 Changes

Data Object properties:
creationDate
modDate
MIMEType
name
path
size

Doc Object properties:
bookmarkRoot
disclosed(5.0.5)
icons
info
layout
securityHandler
selectedAnnots
sounds
templates
URL

methods:
addAnnot
addField
addIcon
addThumbnails
addweblinks
bringToFront
closeDoc
createDataObject
createTemplate
deletePages
deleteSound
expor tAsXFDF
exportDataObject
extractPages
flattenPages
getAnnot
getAnnots
getDataObject
getIcon
getPageBox
getPagelabel

408 Acrobat JavaScript Scripting Reference

New Features and Changes
Acrobat 5.0 Changes

getPageNthWord
getPageNthWordQuads
getPageRotation
getPageTransition
getSound
importAnXFDF
importDataObject
importIcon
importSound
importTextData
insertPages
movePage

print
removeDataObject
removeField
removelcon
removeTemplate
removeThumbnails
removeWeblinks
replacePages
saveAs
selectPageNthWord
setPageBoxes
setPageLabels
setPageRotations
setPageTransitions
submitForm
syncAnnotScan

Event Object properties:
changeEx
keyDown
targetName

Acrobat JavaScript Scripting Reference 409

410

New Features and Changes
Acrobat 5.0 Changes

Field Object

FullScreen Object

properties:

buttonAlignX
buttonAlignY
buttonPosition
buttonScaleHow
buttonScaleWhen
currentValueIndices
doNotScroll
doNotSpellCheck
exportValues
fileSelect
multipleSelection
rect

strokeColor

submi tName
valueAsString

methods:

browseForFileToSubmit
buttonGetCaption
buttonGetIcon
buttonSetCaption
buttonSetIcon
checkThisBox
defaultIsChecked
isBoxChecked
isDefaultChecked
setAction
signatureInfo
signatureSign
signaturevalidate

properties:

backgroundColor
clickAdvances
cursor
defaultTransition
escapeExits
isFullScreen
loop

timeDelay
transitions
usePageTiming
useTimer

Acrobat JavaScript Scripting Reference

New Features and Changes
Acrobat 5.0 Changes

Global Object

Identity Object

Index Object

Pluglin Object

PPKLite Signature Handler
Object (now listed under the
SecurityHandler Object)

methods:
subscribe

properties:
corporation
email
loginName
name

properties:
available
name
path
selected

properties:
certified
loaded
name
path
version

properties
appearances
isLoggedIn
loginName
loginPath
name
signInvisible
signVisible
uiName

methods:
login
logout
newUser
setPasswordTimeout

Acrobat JavaScript Scripting Reference

411

412

New Features and Changes
Acrobat 5.0 Changes

Report Object

Search Object

Security Object

properties:

absIndent
color
absIndent

methods:

breakPage
divide
indent
outdent
open
mail
Report
save
writeText

properties:

available
indexes
markup
maxDocs
proximity
refine
soundex
stem

methods:

addIndex
getIndexForPath
query
removeIndex

properties:

handlers
validateSignaturesOnOpen

methods:

getHandler

Acrobat JavaScript Scripting Reference

New Features and Changes
Acrobat 5.0 Changes

Spell Object properties:
available
dictionaryNames
dictionaryOrder
domainNamess

methods:

addDictionary
addwWord
check
checkText
checkWord
removeDictionary
removeWord
userWords

Statement Object properties:
columnCount
rowCount

methods:
execute
getColumn
getColumnArray
getRow
nextRow

Template Object properties:
hidden
name

methods:
Spawn

Modified in Acrobat 5.0

e The console can act as an editor and can execute JavaScript code.

e The following properties and methods have been changed or enhanced:

App Object language
execMenultem

Doc Object exportAsFDF
print
submitForm

Event Object type

Acrobat JavaScript Scripting Reference

413

- New Features and Changes
Acrobat 5.0 Changes

Field Object textFont
value
buttonImportIcon
getItemAt

Util Object printd

e The section related to Event Object has been greatly enhanced to facilitate better
understanding of the Acrobat JavaScript Event model.

Deprecated in Acrobat 5.0

The following properties and methods have been deprecated:

App Object fullscreen
numPlugIns
getNthPlugInName

Doc Object author
creationDate
creationDate
keywords
modDate
numTemplates
producer
title
getNthTemplate
spawnPageFromTemplate

Field Object hidden

TTS Object soundCues
speechCues

Modified in Acrobat 5.05

e A new symbol has been added to the quick bar denoting which methods are missing
from Acrobat™ Approval™.

e Inthe Doc Object, the property disclosed has been added.

414 Acrobat JavaScript Scripting Reference

New Features and Changes
Acrobat 5.0 Changes

Modified in Adobe 5.1 Reader

A new column has been added to the Quick Bars that summarize availability, and the
meanings of the fourth and fifth columns has changed. They now indicate the availability
of a property or method in the Adobe Reader and Acrobat Approval respectively.

e The symbols that appear in the fourth column indicate whether a property or method is
available in Adobe Reader, and also whether access depends on document rights in the
Acrobat 5.1 Reader.

e The fifth column indicates whether a property or method is available in Acrobat
Approval.

Access to the following properties and methods has changed for the Adobe 5.1 Reader:

Annot Object properties:

alignment modDate rect
AP name readOnly
arrowBegin noView rotate
arrowEnd page strokeColor
author point textFont
contents points type
c‘r’lc:i).;.q'IColor popupRect soundicon
hidden print wideh

methods:
destroy
getProps
setProps

Doc Object properties:

selectedAnnots

methods:
addAnnot importAnXFDF
addField importDataObject
exportAsFDF mailDoc
exportAsXFDF mailForm
getAmnot spawnPageFromTemplate
getAnnots .
getNthTemplate submitForm
importAnFDF syncAnnotScan

Template Object methods:
spawn

Acrobat JavaScript Scripting Reference 415

- New Features and Changes
Acrobat 5.0 Changes

416 Acrobat JavaScript Scripting Reference

	Acrobat JavaScript Scripting Reference
	Contents
	Preface
	Introduction
	What’s In This Document

	Document Conventions
	Font Conventions Used in This Book
	Quick Bars

	Other Sources of Information
	Online Help
	References

	Acrobat JavaScript Scripting Reference
	ADBC Object
	ADBC Properties
	SQL Types
	JavaScript Types

	ADBC Methods
	getDataSourceList
	newConnection

	AlternatePresentation Object
	AlternatePresentation Properties
	active
	type

	AlternatePresentation Methods
	start
	stop

	Annot Object
	Annotation Types
	Annotation Access from JavaScript
	Annot Properties
	alignment
	AP
	arrowBegin
	arrowEnd
	attachIcon
	author
	borderEffectIntensity
	borderEffectStyle
	contents
	doc
	fillColor
	gestures
	hidden
	inReplyTo
	modDate
	name
	noteIcon
	noView
	page
	point
	points
	popupOpen
	popupRect
	print
	quads
	rect
	readOnly
	richContents
	rotate
	strokeColor
	textFont
	textSize
	toggleNoView
	type
	soundIcon
	width

	Annot Methods
	destroy
	getProps
	getStateInModel
	setProps
	transitionToState

	App Object
	App Properties
	activeDocs
	calculate
	focusRect
	formsVersion
	fromPDFConverters
	fs
	fullscreen
	language
	numPlugIns
	openInPlace
	platform
	plugIns
	printColorProfiles
	printerNames
	runtimeHighlight
	runtimeHighlightColor
	thermometer
	toolbar
	toolbarHorizontal
	toolbarVertical
	viewerType
	viewerVariation
	viewerVersion

	App Methods
	addMenuItem
	addSubMenu
	addToolButton
	alert
	beep
	clearInterval
	clearTimeOut
	execMenuItem
	getNthPlugInName
	getPath
	goBack
	goForward
	hideMenuItem
	hideToolbarButton
	listMenuItems
	listToolbarButtons
	mailGetAddrs
	mailMsg
	newDoc
	newFDF
	openDoc
	openFDF
	popUpMenu
	popUpMenuEx
	removeToolButton
	response
	setInterval
	setTimeOut

	Bookmark Object
	Bookmark Properties
	children
	color
	doc
	name
	open
	parent
	style

	Bookmark Methods
	createChild
	execute
	insertChild
	remove
	setAction

	Catalog Object
	Catalog Properties
	isIdle
	jobs

	Catalog Methods
	getIndex
	remove

	CatalogJob Generic Object
	Certificate Object
	Certificate Properties
	binary
	issuerDN
	keyUsage
	MD5Hash
	SHA1Hash
	serialNumber
	subjectCN
	subjectDN
	usage

	Collab Object
	Collab Methods
	addStateModel
	removeStateModel

	Color Object
	Color Arrays
	Color Properties
	Color Methods
	convert
	equal

	Column Generic Object
	ColumnInfo Generic Object
	Connection Object
	Connection Methods
	close
	newStatement
	getTableList
	getColumnList

	Console Object
	Console Methods
	show
	hide
	println
	clear

	Data Object
	Data Properties
	creationDate
	modDate
	MIMEType
	name
	path
	size

	DataSourceInfo Generic Object
	Dbg Object
	Dbg Properties
	bps

	Dbg Methods
	c
	cb
	q
	sb
	si
	sn
	so
	sv

	Directory Object
	Directory Properties
	info

	Directory Methods
	connect

	DirConnection Object
	DirConnection Properties
	canList
	canDoCustomSearch
	canDoCustomUISearch
	canDoStandardSearch
	groups
	name
	uiName

	DirConnection Methods
	search
	setOutputFields

	Doc Object
	Doc Access from JavaScript
	Doc Properties
	alternatePresentations
	author
	baseURL
	bookmarkRoot
	calculate
	creationDate
	creator
	dataObjects
	delay
	dirty
	disclosed
	documentFileName
	external
	filesize
	icons
	info
	keywords
	layout
	metadata
	modDate
	numFields
	numPages
	numTemplates
	path
	pageNum
	permStatusReady
	producer
	securityHandler
	selectedAnnots
	sounds
	spellDictionaryOrder
	spellLanguageOrder
	subject
	templates
	title
	URL
	zoom
	zoomType

	Doc Methods
	addAnnot
	addField
	addIcon
	addLink
	addRecipientListCryptFilter
	addScript
	addThumbnails
	addWeblinks
	bringToFront
	calculateNow
	closeDoc
	createDataObject
	createTemplate
	deletePages
	deleteSound
	encryptForRecipients
	exportAsText
	exportAsFDF
	exportAsXFDF
	exportDataObject
	exportXFAData
	extractPages
	flattenPages
	getAnnot
	getAnnots
	getDataObject
	getField
	getIcon
	getLegalWarnings
	getLinks
	getNthFieldName
	getNthTemplate
	getOCGs
	getPageBox
	getPageLabel
	getPageNthWord
	getPageNthWordQuads
	getPageNumWords
	getPageRotation
	getPageTransition
	getPrintParams
	getSound
	getTemplate
	getURL
	gotoNamedDest
	importAnFDF
	importAnXFDF
	importDataObject
	importIcon
	importSound
	importTextData
	importXFAData
	insertPages
	mailDoc
	mailForm
	movePage
	newPage
	print
	removeDataObject
	removeField
	removeIcon
	removeLinks
	removeTemplate
	removeThumbnails
	removeWeblinks
	replacePages
	resetForm
	saveAs
	scroll
	selectPageNthWord
	setAction
	setPageAction
	setPageBoxes
	setPageLabels
	setPageRotations
	setPageTabOrder
	setPageTransitions
	spawnPageFromTemplate
	submitForm
	syncAnnotScan

	Error Objects
	Error Properties
	fileName
	lineNumber
	message
	name

	Error Methods
	toString

	Event Object
	Event Type/Name Combinations
	Document Event Processing
	Form Event Processing
	Event Properties
	change
	changeEx
	commitKey
	fieldFull
	keyDown
	modifier
	name
	rc
	richChange
	richChangeEx
	richValue
	selEnd
	selStart
	shift
	source
	target
	targetName
	type
	value
	willCommit

	FDF Object
	FDF Properties
	deleteOption
	isSigned
	numEmbeddedFiles

	FDF Methods
	addContact
	addEmbeddedFile
	addRequest
	close
	mail
	save
	signatureClear
	signatureSign
	signatureValidate

	Field Object
	Field Access from JavaScript
	Field Properties
	alignment
	borderStyle
	buttonAlignX
	buttonAlignY
	buttonFitBounds
	buttonPosition
	buttonScaleHow
	buttonScaleWhen
	calcOrderIndex
	charLimit
	comb
	commitOnSelChange
	currentValueIndices
	defaultStyle
	defaultValue
	doNotScroll
	doNotSpellCheck
	delay
	display
	doc
	editable
	exportValues
	fileSelect
	fillColor
	hidden
	highlight
	lineWidth
	multiline
	multipleSelection
	name
	numItems
	page
	password
	print
	radiosInUnison
	readonly
	rect
	required
	richText
	richValue
	rotation
	strokeColor
	style
	submitName
	textColor
	textFont
	textSize
	type
	userName
	value
	valueAsString

	Field Methods
	browseForFileToSubmit
	buttonGetCaption
	buttonGetIcon
	buttonImportIcon
	buttonSetCaption
	buttonSetIcon
	checkThisBox
	clearItems
	defaultIsChecked
	deleteItemAt
	getArray
	getItemAt
	getLock
	insertItemAt
	isBoxChecked
	isDefaultChecked
	setAction
	setFocus
	setItems
	setLock
	signatureGetSeedValue
	signatureInfo
	signatureSetSeedValue
	signatureSign
	signatureValidate

	FullScreen Object
	FullScreen Properties
	backgroundColor
	clickAdvances
	cursor
	defaultTransition
	escapeExits
	isFullScreen
	loop
	timeDelay
	transitions
	usePageTiming
	useTimer

	Global Object
	Creating Global Properties
	Deleting Global Properties
	Global Methods
	setPersistent
	subscribe

	Icon Generic Object
	Icon Stream Generic Object
	Identity Object
	Identity Properties
	corporation
	email
	loginName
	name

	Index Object
	Index Properties
	available
	name
	path
	selected

	Index Methods
	build

	Link Object
	Link Properties
	borderColor
	borderWidth
	highlightMode
	rect

	Link Methods
	setAction

	OCG Object
	OCG Properties
	name
	state

	OCG Methods
	setAction

	PlugIn Object
	PlugIn Properties
	certified
	loaded
	name
	path
	version

	printParams Object
	PrintParams Properties
	binaryOK
	bitmapDPI
	colorOverride
	colorProfile
	constants
	downloadFarEastFonts
	fileName
	firstPage
	flags
	fontPolicy
	gradientDPI
	interactive
	lastPage
	pageHandling
	pageSubset
	printAsImage
	printContent
	printerName
	psLevel
	rasterFlags
	reversePages
	tileLabel
	tileMark
	tileOverlap
	tileScale
	transparencyLevel
	usePrinterCRD
	useT1Conversion

	RDN Generic Object
	Report Object
	Report Properties
	absIndent
	color
	size
	style

	Report Methods
	breakPage
	divide
	indent
	outdent
	open
	save
	mail
	Report
	writeText

	Row Generic Object
	Search Object
	Search Properties
	available
	docInfo
	docText
	docXMP
	bookmarks
	ignoreAsianCharacterWidth
	indexes
	jpegExif
	legacySearch
	markup
	matchCase
	matchWholeWord
	maxDocs
	proximity
	refine
	soundex
	stem
	thesaurus
	wordMatching

	Search Methods
	addIndex
	getIndexForPath
	query
	removeIndex

	Security Object
	Security Properties
	handlers
	validateSignaturesOnOpen

	Security Methods
	chooseRecipientsDialog
	getHandler
	exportToFile
	importFromFile

	SecurityHandler Object
	SecurityHandler Properties
	appearances
	digitalIDs
	directories
	directoryHandlers
	isLoggedIn
	loginName
	loginPath
	name
	signAuthor
	signFDF
	signInvisible
	signValidate
	signVisible
	uiName

	SecurityHandler Methods
	login
	logout
	newDirectory
	newUser
	setPasswordTimeout

	SignatureInfo Object
	SignatureInfo Object properties

	SOAP Object
	SOAP Properties
	wireDump

	SOAP Methods
	connect
	request
	response
	streamDecode
	streamEncode
	streamFromString
	stringFromStream

	Sound Object
	Sound Properties
	name

	Sound Methods
	play
	pause
	stop

	Span Object
	Span Properties
	alignment
	fontFamily
	fontStretch
	fontStyle
	fontWeight
	text
	textColor
	textSize
	strikethrough
	subscript
	superscript
	underline

	Spell Object
	Spell Properties
	available
	dictionaryNames
	dictionaryOrder
	domainNames
	languages
	languageOrder

	Spell Methods
	addDictionary
	addWord
	check
	checkText
	checkWord
	customDictionaryClose
	customDictionaryCreate
	customDictionaryDelete
	customDictionaryExport
	customDictionaryOpen
	ignoreAll
	removeDictionary
	removeWord
	userWords

	Statement Object
	Statement Properties
	columnCount
	rowCount

	Statement Methods
	execute
	getColumn
	getColumnArray
	getRow
	nextRow

	TableInfo Generic Object
	Template Object
	Template Properties
	hidden
	name

	Template Methods
	spawn

	Thermometer Object
	Thermometer Properties
	cancelled
	duration
	value
	text

	Thermometer Methods
	begin
	end

	TTS Object
	TTS Properties
	available
	numSpeakers
	pitch
	soundCues
	speaker
	speechCues
	speechRate
	volume

	TTS Methods
	getNthSpeakerName
	pause
	qSilence
	qSound
	qText
	reset
	resume
	stop
	talk

	this Object
	Variable and Function Name Conflicts

	Util Object
	Util Methods
	printf
	printd
	printx
	scand
	spansToXML
	xmlToSpans

	XFA Object

	New Features and Changes
	Acrobat 6.0 Changes
	Introduced in Acrobat 6.0
	Modified in Acrobat 6.0
	Deprecated in Acrobat 6.0
	Introduced in Acrobat 6.0.2

	Acrobat 5.0 Changes
	Introduced in Acrobat 5.0
	Modified in Acrobat 5.0
	Deprecated in Acrobat 5.0
	Modified in Acrobat 5.05
	Modified in Adobe 5.1 Reader

